ВАШЕ СВИДЕТЕЛЬСТВО
О ПУБЛИКАЦИИ В СМИ И РЕЦЕНЗИЯ
бесплатно за 1 минуту
Добавить материал
Количество Ваших материалов: 0.
Авторское
свидетельство о публикации в СМИ
добавьте 1 материал
Свидетельство
о создании электронного портфолио
добавьте 5 материала
Секретный
подарок
добавьте 10 материалов
Грамота за
информатизацию образования
добавьте 12 материалов
Рецензия
на любой материал бесплатно
добавьте 15 материалов
Видеоуроки
по быстрому созданию эффектных презентаций
добавьте 17 материалов
Иван Жадан свидетельство о публикации рецензия
‘видетельство о публикации скачивание доступно только автору
Материалы по проведению дифференцированного зачета по дисциплине: Математика
Файл:

№ 10 диф зачат по математике.docx - Материалы по проведению дифференцированного зачета по дисциплине: Математика


Все файлы публикации > № 10 диф зачат по математике.docx
Материалы по проведению дифференцированного зачета по дисциплине: Математика

Согласованы и рекомендованы
с целью практического применения
цикловой комиссией и общих
естественнонаучных дисциплин
Протокол № _____ от ___________ 2011 г.
Председатель ЦК
_______Г.Н.Филимонова
УТВЕРЖДАЮ
Зам. директора по УР
_____________А.С.Золотаре
в
Материалы
по проведению дифференцированного зачета
по дисциплине: Математика
Специальность:
260807«Технология продукции общественного питания»
Группа : 10СПО
Подготовил: преподаватель Жадан Иван Алексеевич

г. Каменск­Шахтинский

Материалы по проведению дифференцированного зачета по дисциплине: Математика

2011г

Материалы по проведению дифференцированного зачета по дисциплине: Математика

Темы (разделы) на дифференцированный зачет по дисциплине
_______________Математика___________________
Специальность 260807«Технология продукции общественного питания
»

Группа №___10 СПО_______ курс __1__
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

разде
ла\те
мы
Наименование разделов и тем
Макс.
учеб.
нагруз
ка. час
Кол­во часов
всего
Из них
Внеау
дитор
ная
работа
1 семестр
Введение
1
2
3
4
5
6
Развитие понятия о числе
Корни, степени и логарифмы
Прямые и плоскости в
пространстве
Элементы комбинаторики
Координаты и векторы
Основы тригонометрии
Итого за 1­ой семестр
1
19
58
46
18
27
32
201
1
13
39
31
12
18
22
136
Практ
ически
х
5
20
11
1
6
2
45
Кон
тро
ль
1
2
2
1
1
1
8
6
19
15
6
9
10
65

Материалы по проведению дифференцированного зачета по дисциплине: Математика

Необходимое условие допуска к зачёту:
1. Самостоятельное решение домашнего задания. Наличие выполненных заданий по
внеаудиторной самостоятельной работе в объеме не менее 40% Наличие
выполненных заданий по внеаудиторной самостоятельной работе в объеме не
менее 40%.
2. Усвоение учебного материала в объеме не менее 80%.
Форма дифференцированного зачета:
– письменный опрос;
Процедура проведения дифференцированного зачёта: выполнение письменной
работы в течении 90 минут
Критерии оценивания письменной работы
Отметка
5
4
3
2
Коэффициент
0,9 ≤ к ≤ 1
0,8 ≤ к < 0,9
0,7 ≤ к < 0,8
к < 0,7
Баллы
54­60
48­53
42­47
Менее 42 балла
Условия освобождения студентов от дифференцированного зачёта:
­ посещение студентом теоретических, практических занятий ( 80 – 100%) ;
­ наличие полного объёма конспектов в рабочей тетради по дисциплине;
­ наличие словаря терминов и формул, если предполагает специфика
дисциплины;
­самостоятельное изучение темы (тем);
­выполнение полного объёма домашних (внеаудиторных) работ;
­ стабильные положительные результаты тематического контроля по дисциплине;
­ участие в исследовательской деятельности
Итоговая оценка ставится как среднее арифметическое результатов текущего,
тематического контроля и оценки за данный зачет.

Материалы по проведению дифференцированного зачета по дисциплине: Математика

Объекты контроля и требования к результатам обучения
Требования к результатам
обучения
Уров
ни
усв

зад
а
ния

п/п
1
2
3
4
5
6
7
8
9
Объекты контроля
Решение иррациональных
уравнений.
Решение показательных
уравнений
Взаимное расположение
прямых в пространстве
Формула числа сочетаний
Координаты вектора в
пространстве, простейшие
задачи в координатах
Решение логарифмических
выражений
Решение упражнений по
темам « Координаты вектора
в пространстве, простейшие
задачи в координатах»
Свойства логарифмов
Тригонометрические
формулы
10 Основные свойства степени
11 Формулы приведения
12
13
Решение показательных
неравенств
Радианная мера угла
1
2
3
4
5
6
7
8
9
10
11
12
13
I
I
I
II
I
II
II
II
II
II
II
II
II
Умение решать иррациональные
уравнения
Умение решать показательные
уравнения
Знание определений
параллельных прямых,
скрещивающихся прямыми,
параллельность прямой и
плоскости и перпендикулярных
прямых
Умение выполнять действия с
комбинаторными элементами.
Знание правила вычисления
координат суммы двух и более
векторов, разности, произведения
вектора на число, координат
середины отрезка
Умение решать логарифмические
уравнения
Умение применять при решении
упражнений правила вычисления
координат суммы двух и более
векторов, разности, координат
середины отрезка, расстояния,
длины, скалярного произведения
Знание свойств логарифмов
Знание тригонометрических
формул
Знание основных свойств степени
Умение применять формулы
приведения при выполнении
практических заданий
Умение решать показательные
неравенства
Умение применять формулу для
Коли
честв
о
балло
в
1
1
1
3
1
4
21
4
7
6
3
2
3

Материалы по проведению дифференцированного зачета по дисциплине: Математика

14
Градусная мера угла
14
II
вычисления радианной меры угла
Умение применять формулу для
вычисления градусной меры угла
Итого существенных операций:
3
60
1 вариант
При выполнении заданий 1­3 выписать номер правильного ответа.
1. Корнем уравнения √х−1=2 является:
Варианты ответов.1) 3; 2) 4; 3)5; 4) уравнение корней не имеет.
2. Корнем уравнения 3х=1/3 является:
Варианты ответов.1) ­1; 2) 1; 3) уравнение корней не имеет; 4) 0.
3. Верно ли, что:
а) две прямые в пространстве называются параллельными, если они лежат в
одной плоскости и не пересекаются;
б) две прямые в пространстве называются параллельными, если они не лежат в
одной плоскости и не пересекаются;
1) верно только а; 2) верно только б; 3) оба не верны.
4. Вычислить: С6
5. Выписать пропущенное слово «Каждая координата суммы двух или более
векторов равна ____________соответствующих координат этих векторов»
6. Решить уравнение: log3(x­2)=3
7. Найти: расстояние, середину отрезка, длину, скалярное произведение, сумму и
разность. Если ⃗а
При выполнении заданий 8­10 необходимо установить соответствие.
8. Установи соответствие:
1. loga(bc)
2. r∙log ab
{−2;−1;1},⃗в{3;4;0}
a) log abr

.
3
б) loga
b
c
в) logab+logac
г) alog
3. bc
b+log
c
4. log ab ­ log ac
a
a
9. Установи соответствие:
1. 1
2. 1+tg2α
а) cos2α
б¿ 1−cosα
2
3. cos(α+β)
4. sinα∙cosβ­cosα∙sinβ
в) cosα∙cosβ­sinα∙sinβ
∙cosα+β
α−β
г) 2sin
2
2
5. cos2 α­sin2β
α
2
­6. sin2
7. sinα­sinβ
д) cos2
е) sin(
α + sin2α
­ )α β
ё¿
1
cos2α

Материалы по проведению дифференцированного зачета по дисциплине: Математика


а)ах∙вх
10. Установи соответствие:
1.ах1
ах2
2.ах1
ах2
3. ( ах1

2
4. (а∙в)х
б)
ах1∙х2
ах
вх
в)
5.(а
в)х
6. а­х
г)
ах1+х2
1
ах
д)
е)
ах1−х2
11. Используя формулы приведения вычислить cos1500.
12. Решить неравенство: 3х>9.
13.Найти радианную меру угла, выраженного в градусах: 400.
π
6 .
14. Найти градусную меру угла выраженного в радианах:
2 вариант
При выполнении заданий 1­3 выписать номер правильного ответа.
1. Корнем уравнения √х+2=1 является:
Варианты ответов.1) ­1; 2) уравнение корней не имеет; 3)3; 4)1.
2. Корнем уравнения 2х=­ 8 является:
Варианты ответов.1) ­3; 2) 2; 3) уравнение корней не имеет; 4) 3.
3. Верно ли, что:
а) две прямые называются скрещивающимися, если они лежат в одной
плоскости;
б) две прямые называются скрещивающимися, если они не лежат в одной
плоскости.
1) верно только а; 2) верно только б; 3) оба не верны.
4. Вычислить: С4
5. Выписать пропущенное слово «Каждая координата разности двух векторов равна
____________соответствующих координат этих векторов»
6. Решить уравнение: log5(x­1)=2
7. Найти: расстояние, середину отрезка, длину, скалярное произведение, сумму и
разность. Если ⃗а
При выполнении заданий 8­10 необходимо установить соответствие.
8. Установи соответствие:
b+log
c
1. loga(bc)
a
a
{3;−2;1},⃗в{0;4;2}
а) alog
.

2

Материалы по проведению дифференцированного зачета по дисциплине: Математика

2. r∙log ab
3. bc
б) logab+logac
в) loga
b
c
г) log abr
4. log ab ­ log ac
9. Установи соответствие:
1. 1
2. 1+tg2α
а) cos2α + sin2α
б¿
1
cos2α
3. cos(α+β)
4. sinα∙cosβ­cosα∙sinβ
5. cos2 α­sin2β
α
2
­6. sin2
7. sinα­sinβ
в) cos2α
α−β
∙cosα+β
2
г) 2sin
2
д) cosα∙cosβ­sinα∙sinβ
е) sin(
­ )α β
ё¿ 1−cosα
2

а)
1
ах
10. Установи соответствие:
1.ах1
ах2
2.ах1
ах2
б)
ах1+х2
3. ( ах1 )х
2
в)
ах1−х2
4. (а∙в)х
5.(а
в)х
6. а­х
г)
ах1∙х2
д¿ах∙вх
ах
вх
е)
11. Используя формулы приведения вычислить sin1350.
12. Решить неравенство: 4х <
1
2 .
13.Найти радианную меру угла, выраженного в градусах: 1200.
π
9 .
14. Найти градусную меру угла выраженного в радианах:
При выполнении заданий 1­3 выписать номер правильного ответа.
3 вариант

Материалы по проведению дифференцированного зачета по дисциплине: Математика

1. Корнем уравнения √х−3=0 является:
Варианты ответов.1) 3; 2) ­3; 3)0; 4) уравнение корней не имеет.
2. Корнем уравнения 4х=1/4 является:
Варианты ответов.1) ­1; 2) 1; 3) уравнение корней не имеет; 4) 0.
3. Верно ли, что:
а) прямая и плоскость называются параллельными, если они не имеют общих
точек;
б) прямая и плоскость называются параллельными, если они не имеют только
одну общую точку;
1) верно только а; 2) верно только б; 3) оба не верны.
4. Выписать пропущенное слово «Каждая координата произведения вектора на
число равна ____________соответствующих координат вектора на это число»
5. Решить уравнение: log2(x­3)=4
5
. Вычислить: С7
{4;3;1},⃗в{−2;0;3}
6
7. Найти: расстояние, середину отрезка, длину, скалярное произведение, сумму и
разность. Если ⃗а
При выполнении заданий 8­10 необходимо установить соответствие.
8. Установи соответствие:
1. loga(bc)
2. r∙log ab
а) logab+logac
.

б) loga
b
c
в) log abr
3. bc
c
b+log
г) alog
4. log ab ­ log ac
a
a
9. Установи соответствие:
1. 1
2. 1+tg2α
3. cos(α+β)
4. sinα∙cosβ­cosα∙sinβ
+ sin
а) cosα∙cosβ­sinα∙sinβ
α
б) cos2
в) cos2α
1
г¿

cos2α
5. cos2 α­sin2β
д¿ 1−cosα
2
α−β
2
∙cos α+β
2
ё¿sin(α−β)
α
2
е) 2sin

­6. sin2
7. sinα­sinβ
10. Установи соответствие:
1.ах1
ах2
2.ах1
ах2
3. ( ах1
б)
ах1−х2
1
ах
в)
а)

Материалы по проведению дифференцированного зачета по дисциплине: Математика


2
4. (а∙в)х
5.(а
в)х
6. а­х
ах1+х2
ах
вх
г)
д)ах∙вх
е)
ах1∙х2
11. Используя формулы приведения вычислить cos1200.
12. Решить неравенство:
( 1
2)x
>
1
4 .
13.Найти радианную меру угла, выраженного в градусах: 1500.
π
5 .
14. Найти градусную меру угла выраженного в радианах:
4 вариант
При выполнении заданий 1­3 выписать номер правильного ответа.
1. Корнем уравнения √х+3=4 является:
Варианты ответов.1) 7; 2) уравнение корней не имеет; 3)13; 4)1.
2. Корнем уравнения 5х=25 является:
Варианты ответов.1) ­2; 2) 2; 3) уравнение корней не имеет; 4) 5.
3. Верно ли, что:
а) две прямые в пространстве называются перпендикулярными, если они лежат в
одной плоскости;
б) две прямые в пространстве называются перпендикулярными, если они имеют
одну общую точку;
1) верно только а; 2) верно только б; 3) оба не верны.
4. Выписать пропущенное слово «Каждая координата середины отрезка равна
____________соответствующих координат его концов»
5. Решить уравнение: log3(x+4)=3
2
. Вычислить: С5

{2;−1;3},⃗в{0;−3;3}
6
7. Найти: расстояние, середину отрезка, длину, скалярное произведение, сумму и
разность. Если ⃗а
При выполнении заданий 8­10 необходимо установить соответствие.
8. Установи соответствие:
b
1. loga(bc)
c
а) loga
.
c
a
b+log
a
2. r∙log ab
3. bc
4. log ab ­ log ac
9. Установи соответствие:
1. 1
б) alog
в) logab+logac
г) log abr
а) sin(α­β)

Материалы по проведению дифференцированного зачета по дисциплине: Математика

2. 1+tg2α
3. cos(α+β)
4. sinα∙cosβ­cosα∙sinβ
α−β
∙cos α+β
2
б) 2sin
2
в) cosα∙cosβ­sinα∙sinβ
г¿ 1−cosα
5. cos2 α­sin2β
д¿
2
1
cos2α
α
2
­6. sin2
7. sinα­sinβ
е) cos2α
ё¿cos2α+sin2α

а)
ах1−х2
10. Установи соответствие:
1.ах1
ах2
2.ах1
ах2
3. ( ах1

2
4. (а∙в)х
1
ах
б)
в)
ах1+х2
ах
вх
г)
5.(а
в)х
д¿ах1∙х2
6. а­х
11. Используя формулы приведения вычислить sin2100.
е)ах∙вх
12. Решить неравенство: 2х <
1
2 .
13.Найти радианную меру угла, выраженного в градусах: 750.
π
10 .
14. Найти градусную меру угла выраженного в радианах:
Эталон ответов
Вариант 1
Решение
3
1
1
Сумме
log3(x­2)=3, log3(x­2)=log3 27(1), x­2=27(1), x=29(1).
Проверка: log3(29­2)=3, log3 27=3, 3=3. (1)
Ответ: х=29.

1
2
3
4
5
Р
1
1
1
1
4

Материалы по проведению дифференцированного зачета по дисциплине: Математика

6
7
3=
С6
6!
3!∙3!(1)
= 3!∙4∙5∙6
3!∙1∙2∙3(1)
=20(1)
Дано
а→{−2;−1;1},в→{3;4;0}
Найти : d, хс, ус, zc , |a|,a→∙b→,a→+b→,a→−b→
Решение
d=√(x2−x1)2+(y2−y1)2+(z2−z1)2
(1)
?
0−1
¿
¿
¿2
√¿
(3−(−2))2+(4−(−1))2+¿
(2)
d =
x1+x2
−2+3
2 = 1
2
;yc=−1+4
2 =3
2
;zc=1+0
2 =1
2 (3)
2
xc=
; xc=
|a→|=√x2+y2+z2
(1)
|a→|=√(−2)2+(−1)2+12
|b→|=√32+42+02=5 (2)
a→∙b→=|a→|∙|b→|∙cos(^a→∙b→)
−2∙3+(−1)+1∙0
cos(^a→∙b→)=
= √6 (2)
√6∙5
= √6∙5∙(−2
√6)=−10 (2)
a→∙b→
(1)
=
−10
5√6
=−2
√6 (3)
8
9
10
11
12
13
a→+b→{−2+3;−1+4;1+0},a→+b→{1;3;1}
(2)
a→−b→
= {−2−3;−1−4;1−0},a→−b→{−5;−5;1}
(2)
1в,2а,3г,4б
1д,2ё,3в,4е,5а,6б,7г
1г,2е,3б,4а,5в,6д
cos1500= cos(1800­300) = ­cos300 =­
√3
2
(1) (1) (1)
3x>9, 3x >32(1), x>2(1)
, α0=
π
180
∙40=2π
9 (2)
α0=
π
1800∙α(1)
1800
π
14
αрад=
∙π
6 =300(2)
ИТОГО:
180
π
∙α(1)
, αрад=
3
21
4
7
6
3
2
3
3
60

Материалы по проведению дифференцированного зачета по дисциплине: Математика

Вариант 2

Материалы по проведению дифференцированного зачета по дисциплине: Математика


1
2
3
4
5
6
7
8
9
10
11
12
13
14
Решение
1
3
2
Разности
Log5(x­1)=2, log5(x­1)=log5 25(1), x­1=25(1), x=26(1).
Проверка: log5(26­1)=2, log 525=2, 2=2. (1)
Ответ: х=26.
4!
С4
=6(1)
= 2!∙3∙4
2!∙1∙2(1)
2!∙2!(1)
2=
Дано
а→{3;−2;1},в→{0;4;2}
Найти : d, хс, ус, zc , |a|,a→∙b→,a→+b→,a→−b→
Решение
d=√(x2−x1)2+(y2−y1)2+(z2−z1)2
(1)
?
2−1
¿
¿
¿2
√¿
(0−3)2+(4−(−2))2+¿
(2)
d =
x1+x2
3+0
2 =3
2
;yc=−2+4
2 =1;zc=1+2
2 = 3
2 (3)
−6
√14∙2√5
= −3
√14∙√5 (3)
=
2
= √14 (2)
xc=
; xc=
|a→|=√x2+y2+z2
(1)
|a→|=√32+(−2)2+12
|b→|=√02+42+22=2√5 (2)
a→∙b→=|a→|∙|b→|∙cos(^a→∙b→)
(1)
cos(^a→∙b→)=3∙0+(−2)∙4+1∙2
√14∙2√5
= √14∙2√5∙( −3
a→∙b→
√14∙√5)=−6 (2)
a→+b→{3+0;−2+4;1+2},a→+b→{3;2;3}
(2)
a→−b→
= {3−0;−2−4;1−2},a→−b→{3;−6;−1}
(2)
1б,2г,3а,4в
1а,2б,3д,4е,5в,6ё,7г
1б,2в,3г,4д,5е,6а
sin1350= sin(900+450) = sin450=
√2
2
(1) (1) (1)
4x<1/2, 22x <2­1(1), x<­1/2(1)
π
1800∙α(1)
1800
π
∙α(1)
α0=
αрад=
, α0=
π
180
∙120=2π
3 (2)
, αрад=
180
π
∙π
9 =200(2)
Р
1
1
1
1
4
3
21
4
7
6
3
2
3
3

Материалы по проведению дифференцированного зачета по дисциплине: Математика

Вариант 3

Материалы по проведению дифференцированного зачета по дисциплине: Математика

Решение
1
1
1
Произведению
Log2(x­3)=4, log2(x­3)=log2 16(1), x­3=16(1), x=19(1).
Проверка: log2(19­3)=4, log 216=4, 4=4. (1)
Ответ: х=19.
7!
5=
С7
2!∙5!(1)
= 5!∙6∙7
5!∙1∙2(1)
=21(1)
Дано
а→{4;3;1},в→{−2;0;3}
Найти : d, хс, ус, zc , |a|,a→∙b→,a→+b→,a→−b→
Решение
d=√(x2−x1)2+(y2−y1)2+(z2−z1)2
d = √(−2−4)2+(0−3)2+(3−1)2=√49=7 (2)
(1)
?
x1+x2
4−2
2 =1;yc=3+0
2 = 3
2
;zc= 1+3
2 =2 (3)
2
xc=
; xc=
|a→|=√x2+y2+z2
(1)
|a→|=√42+32+12
= √26 (2)
|b→|=√(−2)2+02+32=√13 (2)
a→∙b→=|a→|∙|b→|∙cos(^a→∙b→)
(1)
cos(^a→∙b→)=4∙(−2)+3∙0+1∙3
√26∙√13
−5
a→∙b→
= √26∙√13∙(
√26∙√13)=−5 (2)
−5
√26∙√13 (3)
=
a→+b→{4−2;3+0;1+3},a→+b→{2;3;4}
(2)
a→−b→
= {4−(−2);3−0;1−3},a→−b→{6;3;−2}
(2)
1а,2в,3г,4б
1б,2г,3а,4ё,5в,6д,7е
1в,2б,3е,4д,5г,6а
cos1200= cos(1800 ­600) = cos600=
1
2

1
2
3
4
5
6
7
8
9
10
11
12
13
(1) (1) (1)
(1/2)x>1/4, (1/2)x >(1/2)2(1), x>2(1)
, α0=
π
180
∙150=5π
6 (2)
α0=
π
1800∙α(1)
1800
π
14
αрад=
∙π
5 =360(2)
ИТОГО:
180
π
∙α(1)
, αрад=
Р
1
1
1
1
4
3
21
4
7
6
3
2
3
3
60

Материалы по проведению дифференцированного зачета по дисциплине: Математика


1
2
3
4
5
6
7
Вариант 4
Решение
3
2
3
Полусумме
Log3(х+4)=3, log3(x+4)=log2 27(1), x+4=27(1), x=23(1).
Проверка: log3(23+4)=3, log 327=3, 3=3. (1)
Ответ: х=4.
2=
С5
=10(1)
= 3!∙4∙5
3!∙1∙2(1)
3!∙2!(1)
5!
Дано
а→{2;−1;3},в→{0;−3;3}
Найти : d, хс, ус, zc , |a|,a→∙b→,a→+b→,a→−b→
Решение
d=√(x2−x1)2+(y2−y1)2+(z2−z1)2
?
3−3
¿
¿
¿2
√¿
(0−2)2+(−3−(−1))2+¿
(2)
d =
x1+x2
2+0
2 =1;yc=−3−1
2 =−2;zc=3+3
2 =3 (3)
2
xc=
; xc=
|a→|=√x2+y2+z2
(1)
|a→|=√22+(−1)2+32
= √14 (2)
|b→|=√02+(−3)2+32=3√2 (2)
a→∙b→=|a→|∙|b→|∙cos(^a→∙b→)
(1)
cos(^a→∙b→)=2∙0+(−1)∙(−3)+3∙3
12
√14∙3√2
=
=
4
√14∙√2 (3)
√14∙3√2
= √14∙3√2∙ 4
√14∙√2
=12 (2)
a→∙b→
a→+b→{2+0;−1−3;3+3},a→+b→{2;−4;6}
(2)
= {2−0;−1+3;3−3},a→−b→{2;2;0}
a→−b→
(2)
8
9
10
1в,2г,3б,4а
1ё,2д,3в,4а,5е,6г,7б
1в,2а,3д,4е,5г,6б
Р
1
1
1
1
4
3
21
4
7
6

Материалы по проведению дифференцированного зачета по дисциплине: Математика

Sin2100= sin(2700­600) = ­cos600=
−1
2
(1) (1) (1)
2x<1/2, 2x <2­1(1), x<­1 (1)
, α0=
π
180
∙75=5π
12 (2)
11
12
13
14
α0=
π
1800∙α(1)
1800
π
∙α(1)
αрад=
∙π
10=180(2)
ИТОГО:
180
π
, αрад=
3
2
3
3
60
Материал которой необходимо повторить для дифференцированного зачета по
дисциплине «Математика» в группе 10 СПО
При выполнении заданий 1­3 выписать номер правильного ответа.
1. Решение иррациональных уравнений
2. Решение показательных уравнений
3. Знание определения перпендикулярных, скрещивающихся, пересекающихся,
параллельных прямых в пространстве.
4. знание определений по теме «Координаты вектора»
5. Решение логарифмических уравнений
Решение комбинаторных задач

6.
7. Простей задачи в координатах, скалярное произведение векторов
При выполнении заданий 8­10 необходимо установить соответствие.

Материалы по проведению дифференцированного зачета по дисциплине: Математика

8. Знание свойств логарифмов
9. Знание тригонометрических формул
10. Знание свойств степени
11. Решение упражнений с помощью формул приведения.
12. Решение показательных неравенств
13.Нахождения радианной меры угла, выраженного в градусах.
14. Нахождение градусной меры угла выраженного в радианах .

Прямая ссылка на скачивание файла: Скачать файл