Что делает ИДЕАЛЬНЫЙ газ ИДЕАЛЬНЫМ?
отaничoхе
вдноиеакоы
угепуро
незначительны
меъбo
ныеунркуилевтмляро ысли
хаотичное
одинаковые
упругое столкновение
объем
внутримолекулярные силы
знать основные положения молекулярно-кинетической теории газов;
объяснять, как движущиеся молекулы газа создают давление, вывести формулу: p=1/3 (nm0 〈v〉2)
выводить зависимость cредней кинетической энергии поступательного движения молекул от температуры
Kinetic Molecular Theory
All gases are made up of identical atoms or molecules.
All atoms or molecules move randomly.
The volume of the atoms or molecules is negligible when compared with the volume occupied by the gas.
The intermolecular forces are negligible except during collisions.
Inter-atomic or molecular collisions are elastic.
The duration of a collision is negligible compared with the time spent travelling between collisions.
Atoms and molecules move with constant speed between collisions. Gravity has no effect on molecular motion.
Think
Together
Motion of an IDEAL particle
After collision with wall A, the change in momentum is given by:
The total distance traveled for the particle before its next collision to wall A is 2𝑑.
∆ 𝑝 𝑥 𝑝𝑝 𝑝 𝑥 𝑥𝑥 𝑝 𝑥 =−𝑚𝑚 𝑣 𝑥 𝑣𝑣 𝑣 𝑥 𝑥𝑥 𝑣 𝑥 −𝑚𝑚 𝑣 𝑥 𝑣𝑣 𝑣 𝑥 𝑥𝑥 𝑣 𝑥
∆ 𝑝 𝑥 𝑝𝑝 𝑝 𝑥 𝑥𝑥 𝑝 𝑥 =−2𝑚𝑚 𝑣 𝑥 𝑣𝑣 𝑣 𝑥 𝑥𝑥 𝑣 𝑥
𝑑
The total time for this entire trip is:
∆𝑡𝑡= 2𝑑 𝑣 𝑥 2𝑑𝑑 2𝑑 𝑣 𝑥 𝑣 𝑥 𝑣𝑣 𝑣 𝑥 𝑥𝑥 𝑣 𝑥 2𝑑 𝑣 𝑥
A
B
A
B
Think
Together
Motion of an IDEAL particle
If Fx1 is the magnitude of the average force exerted by a molecule on the wall in the time t, thus by applying Newton’s second law of motion gives
𝐹 𝑥1 𝐹𝐹 𝐹 𝑥1 𝑥𝑥1 𝐹 𝑥1 = ∆ 𝑝 𝑥 ∆𝑡 ∆ 𝑝 𝑥 ∆ 𝑝 𝑥 𝑝𝑝 𝑝 𝑥 𝑥𝑥 𝑝 𝑥 ∆ 𝑝 𝑥 ∆ 𝑝 𝑥 ∆𝑡 ∆𝑡𝑡 ∆ 𝑝 𝑥 ∆𝑡 = 2𝑚 𝑣 𝑥 2𝑑 𝑣 𝑥 2𝑚𝑚 𝑣 𝑥 𝑣𝑣 𝑣 𝑥 𝑥𝑥 𝑣 𝑥 2𝑚 𝑣 𝑥 2𝑑 𝑣 𝑥 2𝑑 𝑣 𝑥 2𝑑𝑑 2𝑑 𝑣 𝑥 𝑣 𝑥 𝑣𝑣 𝑣 𝑥 𝑥𝑥 𝑣 𝑥 2𝑑 𝑣 𝑥 2𝑚 𝑣 𝑥 2𝑑 𝑣 𝑥 = 𝑚 𝑑 𝑚𝑚 𝑚 𝑑 𝑑𝑑 𝑚 𝑑 𝑣 𝑥 2 𝑣 𝑥 𝑣𝑣 𝑣 𝑥 𝑥𝑥 𝑣 𝑥 𝑣 𝑥 2 2 𝑣 𝑥 2
𝑑
A
B
A
B
For N number of particles:
𝐹 𝑥 𝐹𝐹 𝐹 𝑥 𝑥𝑥 𝐹 𝑥 = 𝑚 𝑑 𝑚𝑚 𝑚 𝑑 𝑑𝑑 𝑚 𝑑 𝑣 𝑥1 2 𝑣 𝑥1 𝑣𝑣 𝑣 𝑥1 𝑥𝑥1 𝑣 𝑥1 𝑣 𝑥1 2 2 𝑣 𝑥1 2 + 𝑚 𝑑 𝑚𝑚 𝑚 𝑑 𝑑𝑑 𝑚 𝑑 𝑣 𝑥2 2 𝑣 𝑥2 𝑣𝑣 𝑣 𝑥2 𝑥𝑥2 𝑣 𝑥2 𝑣 𝑥2 2 2 𝑣 𝑥2 2 + …+ 𝑚 𝑑 𝑚𝑚 𝑚 𝑑 𝑑𝑑 𝑚 𝑑 𝑣 𝑥𝑁 2 𝑣 𝑥𝑁 𝑣𝑣 𝑣 𝑥𝑁 𝑥𝑥𝑁𝑁 𝑣 𝑥𝑁 𝑣 𝑥𝑁 2 2 𝑣 𝑥𝑁 2
𝐹 𝑥 𝐹𝐹 𝐹 𝑥 𝑥𝑥 𝐹 𝑥 = 𝑚 𝑑 𝑚𝑚 𝑚 𝑑 𝑑𝑑 𝑚 𝑑 (𝑣 𝑥1 2 (𝑣 𝑥1 (𝑣𝑣 (𝑣 𝑥1 𝑥𝑥1 (𝑣 𝑥1 (𝑣 𝑥1 2 2 (𝑣 𝑥1 2 + 𝑣 𝑥2 2 𝑣 𝑥2 𝑣𝑣 𝑣 𝑥2 𝑥𝑥2 𝑣 𝑥2 𝑣 𝑥2 2 2 𝑣 𝑥2 2 + … 𝑣 𝑥𝑁 2 𝑣 𝑥𝑁 𝑣𝑣 𝑣 𝑥𝑁 𝑥𝑥𝑁𝑁 𝑣 𝑥𝑁 𝑣 𝑥𝑁 2 2 𝑣 𝑥𝑁 2 )
Think
Together
Motion of an IDEAL particle
The mean value of the square of the velocity in the x direction for N molecules is
𝐹 𝑥 𝐹𝐹 𝐹 𝑥 𝑥𝑥 𝐹 𝑥 = 𝑚 𝑑 𝑚𝑚 𝑚 𝑑 𝑑𝑑 𝑚 𝑑 (𝑣 𝑥1 2 (𝑣 𝑥1 (𝑣𝑣 (𝑣 𝑥1 𝑥𝑥1 (𝑣 𝑥1 (𝑣 𝑥1 2 2 (𝑣 𝑥1 2 + 𝑣 𝑥2 2 𝑣 𝑥2 𝑣𝑣 𝑣 𝑥2 𝑥𝑥2 𝑣 𝑥2 𝑣 𝑥2 2 2 𝑣 𝑥2 2 + … 𝑣 𝑥𝑁 2 𝑣 𝑥𝑁 𝑣𝑣 𝑣 𝑥𝑁 𝑥𝑥𝑁𝑁 𝑣 𝑥𝑁 𝑣 𝑥𝑁 2 2 𝑣 𝑥𝑁 2 )
𝑣 𝑥 2 𝑣 𝑥 2 𝑣 𝑥 𝑣𝑣 𝑣 𝑥 𝑥𝑥 𝑣 𝑥 𝑣 𝑥 2 2 𝑣 𝑥 2 𝑣 𝑥 2 = (𝑣 𝑥1 2 + 𝑣 𝑥2 2 + … 𝑣 𝑥𝑁 2 ) 𝑁 (𝑣 𝑥1 2 (𝑣 𝑥1 (𝑣𝑣 (𝑣 𝑥1 𝑥𝑥1 (𝑣 𝑥1 (𝑣 𝑥1 2 2 (𝑣 𝑥1 2 + 𝑣 𝑥2 2 𝑣 𝑥2 𝑣𝑣 𝑣 𝑥2 𝑥𝑥2 𝑣 𝑥2 𝑣 𝑥2 2 2 𝑣 𝑥2 2 + … 𝑣 𝑥𝑁 2 𝑣 𝑥𝑁 𝑣𝑣 𝑣 𝑥𝑁 𝑥𝑥𝑁𝑁 𝑣 𝑥𝑁 𝑣 𝑥𝑁 2 2 𝑣 𝑥𝑁 2 ) (𝑣 𝑥1 2 + 𝑣 𝑥2 2 + … 𝑣 𝑥𝑁 2 ) 𝑁 𝑁𝑁 (𝑣 𝑥1 2 + 𝑣 𝑥2 2 + … 𝑣 𝑥𝑁 2 ) 𝑁
𝑁𝑁 𝑣 𝑥 2 𝑣 𝑥 2 𝑣 𝑥 𝑣𝑣 𝑣 𝑥 𝑥𝑥 𝑣 𝑥 𝑣 𝑥 2 2 𝑣 𝑥 2 𝑣 𝑥 2 = (𝑣 𝑥1 2 (𝑣 𝑥1 (𝑣𝑣 (𝑣 𝑥1 𝑥𝑥1 (𝑣 𝑥1 (𝑣 𝑥1 2 2 (𝑣 𝑥1 2 + 𝑣 𝑥2 2 𝑣 𝑥2 𝑣𝑣 𝑣 𝑥2 𝑥𝑥2 𝑣 𝑥2 𝑣 𝑥2 2 2 𝑣 𝑥2 2 + … 𝑣 𝑥𝑁 2 𝑣 𝑥𝑁 𝑣𝑣 𝑣 𝑥𝑁 𝑥𝑥𝑁𝑁 𝑣 𝑥𝑁 𝑣 𝑥𝑁 2 2 𝑣 𝑥𝑁 2 )
Thus, the x component for the total force exerted on the wall of the cubical container is:
𝐹 𝑥 𝐹𝐹 𝐹 𝑥 𝑥𝑥 𝐹 𝑥 = 𝑚 𝑑 𝑚𝑚 𝑚 𝑑 𝑑𝑑 𝑚 𝑑 𝑁𝑁 𝑣 𝑥 2 𝑣 𝑥 2 𝑣 𝑥 𝑣𝑣 𝑣 𝑥 𝑥𝑥 𝑣 𝑥 𝑣 𝑥 2 2 𝑣 𝑥 2 𝑣 𝑥 2
Think
Together
Motion of an IDEAL particle
For velocity 𝒗𝒗 and its components:
Then, it follows:
𝑣 2 𝑣𝑣 𝑣 2 2 𝑣 2 = 𝑣 𝑥 2 𝑣 𝑥 𝑣𝑣 𝑣 𝑥 𝑥𝑥 𝑣 𝑥 𝑣 𝑥 2 2 𝑣 𝑥 2 + 𝑣 𝑦 2 𝑣 𝑦 𝑣𝑣 𝑣 𝑦 𝑦𝑦 𝑣 𝑦 𝑣 𝑦 2 2 𝑣 𝑦 2 + 𝑣 𝑧 2 𝑣 𝑧 𝑣𝑣 𝑣 𝑧 𝑧𝑧 𝑣 𝑧 𝑣 𝑧 2 2 𝑣 𝑧 2
𝑣 2 𝑣 2 𝑣𝑣 𝑣 2 2 𝑣 2 𝑣 2 = 𝑣 𝑥 2 𝑣 𝑥 2 𝑣 𝑥 𝑣𝑣 𝑣 𝑥 𝑥𝑥 𝑣 𝑥 𝑣 𝑥 2 2 𝑣 𝑥 2 𝑣 𝑥 2 + 𝑣 𝑦 2 𝑣 𝑦 2 𝑣 𝑦 𝑣𝑣 𝑣 𝑦 𝑦𝑦 𝑣 𝑦 𝑣 𝑦 2 2 𝑣 𝑦 2 𝑣 𝑦 2 + 𝑣 𝑧 2 𝑣 𝑧 2 𝑣 𝑧 𝑣𝑣 𝑣 𝑧 𝑧𝑧 𝑣 𝑧 𝑣 𝑧 2 2 𝑣 𝑧 2 𝑣 𝑧 2
Think
Together
Motion of an IDEAL particle
𝑣 𝑥 2 𝑣 𝑥 2 𝑣 𝑥 𝑣𝑣 𝑣 𝑥 𝑥𝑥 𝑣 𝑥 𝑣 𝑥 2 2 𝑣 𝑥 2 𝑣 𝑥 2 = 𝑣 𝑦 2 𝑣 𝑦 2 𝑣 𝑦 𝑣𝑣 𝑣 𝑦 𝑦𝑦 𝑣 𝑦 𝑣 𝑦 2 2 𝑣 𝑦 2 𝑣 𝑦 2 = 𝑣 𝑧 2 𝑣 𝑧 2 𝑣 𝑧 𝑣𝑣 𝑣 𝑧 𝑧𝑧 𝑣 𝑧 𝑣 𝑧 2 2 𝑣 𝑧 2 𝑣 𝑧 2
Since the velocities of the molecules in the ideal gas are completely random, there is no preference to one direction or another. Hence:
𝑣 2 𝑣 2 𝑣𝑣 𝑣 2 2 𝑣 2 𝑣 2 = 𝑣 𝑥 2 𝑣 𝑥 2 𝑣 𝑥 𝑣𝑣 𝑣 𝑥 𝑥𝑥 𝑣 𝑥 𝑣 𝑥 2 2 𝑣 𝑥 2 𝑣 𝑥 2 + 𝑣 𝑦 2 𝑣 𝑦 2 𝑣 𝑦 𝑣𝑣 𝑣 𝑦 𝑦𝑦 𝑣 𝑦 𝑣 𝑦 2 2 𝑣 𝑦 2 𝑣 𝑦 2 + 𝑣 𝑧 2 𝑣 𝑧 2 𝑣 𝑧 𝑣𝑣 𝑣 𝑧 𝑧𝑧 𝑣 𝑧 𝑣 𝑧 2 2 𝑣 𝑧 2 𝑣 𝑧 2
𝑣 2 𝑣 2 𝑣𝑣 𝑣 2 2 𝑣 2 𝑣 2 =3 𝑣 𝑥 2 𝑣 𝑥 2 𝑣 𝑥 𝑣𝑣 𝑣 𝑥 𝑥𝑥 𝑣 𝑥 𝑣 𝑥 2 2 𝑣 𝑥 2 𝑣 𝑥 2
Think
Together
Pressure of an IDEAL particle
p= 𝐹 𝑆 𝐹𝐹 𝐹 𝑆 𝑆𝑆 𝐹 𝑆
p= 𝑁 𝑚 0 𝑣 𝑥 2 𝑑 3 𝑁𝑁 𝑚 0 𝑚𝑚 𝑚 0 0 𝑚 0 𝑣 𝑥 2 𝑣𝑣 𝑣 𝑥 2 𝑥𝑥 𝑣 𝑥 2 2 𝑣 𝑥 2 𝑁 𝑚 0 𝑣 𝑥 2 𝑑 3 𝑑 3 𝑑𝑑 𝑑 3 3 𝑑 3 𝑁 𝑚 0 𝑣 𝑥 2 𝑑 3
𝑝𝑝= 𝑁 𝑚 0 𝑣 𝑥 2 𝑉 𝑁𝑁 𝑚 0 𝑚𝑚 𝑚 0 0 𝑚 0 𝑣 𝑥 2 𝑣𝑣 𝑣 𝑥 2 𝑥𝑥 𝑣 𝑥 2 2 𝑣 𝑥 2 𝑁 𝑚 0 𝑣 𝑥 2 𝑉 𝑉𝑉 𝑁 𝑚 0 𝑣 𝑥 2 𝑉
𝑝𝑝= 1 3 1 1 3 3 1 3 𝑁 𝑚 0 𝑣 𝑥 2 𝑉 𝑁𝑁 𝑚 0 𝑚𝑚 𝑚 0 0 𝑚 0 𝑣 𝑥 2 𝑣𝑣 𝑣 𝑥 2 𝑥𝑥 𝑣 𝑥 2 2 𝑣 𝑥 2 𝑁 𝑚 0 𝑣 𝑥 2 𝑉 𝑉𝑉 𝑁 𝑚 0 𝑣 𝑥 2 𝑉
𝑝= 1 3 ρ 𝑣 2
Which reason best explains increase of temperature in matters?
increase in number of molecules
decrease in number of molecules
higher speed of molecules
slower speed of molecules
3
Решение 8:
(a) Средняя скорость = 1,44 × 10 3 мс -1
{Средняя скорость = (1,32 + 1,50 + 1,46 + 1,28 + 1,64) × 10 3 /5 = 1,44 × 10 3 мс -1 }
(б) Нам нужно суммировать индивидуальные квадратные скорости
Средняя квадратная скорость = 2,09 × 10 6 м 2 с -2
{Среднеквадратичное скорость = (1,32 2 + 1,50 2 + 1,46 2 + 1,28 2 + 1,64 2 ) × (10 3 ) 2 /5 = 2,09 × 10 6 м 2 сек -2 }
(c) Корневая среднеквадратическая скорость = 1,45 × 10 3 мс -1
{Это квадратный корень средней квадратичной скорости.}
© ООО «Знанио»
С вами с 2009 года.