Презентация по дисциплине "Геология" - "Кристаллические решетки"

  • Презентации учебные
  • ppt
  • 02.12.2018
Публикация в СМИ для учителей

Публикация в СМИ для учителей

Бесплатное участие. Свидетельство СМИ сразу.
Мгновенные 10 документов в портфолио.

Презентация по дисциплине "Геология" - "Кристаллические решетки" для студентов очного и заочного обучения Сургутского нефтяного техникума (филиал) ФГБОУ ВО "Югорский государственный университет" согласно календарно-тематического плана дисциплины к разделу "Кристаллография", учебное пособие Лазарев В.В. "Геология" - 2016 г. специальностей "БНГС" и "РНГМ".
Иконка файла материала Кристаллические решетки.ppt
Свойства кристаллических  веществ.  Кристаллографические оси и  элементы симметрии  кристаллов.
Изучение минералов Изучение минералов  Более точный метод- Наиболее простой и распространенный метод  Наиболее простой и распространенный метод изучения минералов — это знакомство с ними изучения минералов — это знакомство с ними по внешним признакам, т. е. определение их по внешним признакам, т. е. определение их макроскопическим путем. путем. макроскопическим Более точный метод- микроскопический микроскопический, , применяемый в минералогии, петрографии и применяемый в минералогии, петрографии и минераграфии. минераграфии. Твердые минералы в большинстве случаев  Твердые минералы в большинстве случаев кристаллическими веществами, , являются кристаллическими веществами являются имеющими форму более или менее хорошо имеющими форму более или менее хорошо выраженных многогранников, неправильных выраженных многогранников, неправильных зерен и сплошных масс. зерен и сплошных масс. Аморфные минералы- образуют образуют  Аморфные минералы- бесформенные массы. бесформенные массы.
Кристаллические решетки Кристаллические решетки Кристаллические  Кристаллические решетки – – основной основной решетки признак для для признак кристаллических кристаллических веществ, где веществ, где слагающие их атомы слагающие их атомы и молекулы и молекулы занимают занимают определенные места определенные места в пространстве, т.е. в пространстве, т.е. для них характерна для них характерна строго определенная строго определенная группировка группировка слагающих их слагающих их атомов и ионов. атомов и ионов. Кристаллическая решетка каменной соли (галита) Черные кружки- ионы натрия, белые – ионы хлора.
Основные характеристики кристаллической  Основные характеристики кристаллической  решетки решетки Геометрически кристаллическая решетка  Геометрически кристаллическая решетка представляет собой плотно расположенные друг к представляет собой плотно расположенные друг к другу многогранники (кубы, октаэдры, другу многогранники (кубы, октаэдры, параллелепипеды, ромбоэдры и др.). параллелепипеды, ромбоэдры и др.). В вершинах, центрах или серединах граней  В вершинах, центрах или серединах граней многогранников на строго определенном многогранников на строго определенном расстоянии располагаются атомы (или ионы). Они расстоянии располагаются атомы (или ионы). Они образуют так называемые узлы кристаллической узлы кристаллической образуют так называемые решетки.. решетки Совокупность узлов, лежащих вдоль прямой и  Совокупность узлов, лежащих вдоль прямой и периодически повторяющихся через равные периодически повторяющихся через равные промежутки, формирует ряд пространственной ряд пространственной промежутки, формирует решетки, , а совокупность рядов, расположенных в а совокупность рядов, расположенных в решетки одной плоскости,— плоскую сетку сетку одной плоскости,— плоскую кристаллической решетки. кристаллической решетки.
В кристалле различают следующие элементы:   В кристалле различают следующие элементы: грани- плоскости, ограничивающие кристаллы; плоскости, ограничивающие кристаллы;  грани-  ребраребра — линии пересечения граней; — линии пересечения граней;  вершины  гранные углы  Вершины кристаллов вершины — точки пересечения ребер; — точки пересечения ребер; гранные углы — углы между гранями. — углы между гранями. Вершины кристаллов соответствуют узлам, ребра — рядам, а соответствуют узлам, ребра — рядам, а грани — плоским сеткам пространственной решетки. грани — плоским сеткам пространственной решетки. Для всех кристаллов одного и того же вещества углы между  Для всех кристаллов одного и того же вещества углы между соответствующими гранями одинаковы и постоянны. Это Это соответствующими гранями одинаковы и постоянны. закон постоянства гранных углов — один из важнейших законов закон постоянства гранных углов — один из важнейших законов кристаллографии. Он дает возможность определять минералы кристаллографии. Он дает возможность определять минералы даже в мелких обломках кристаллов, если они в какой-то мере даже в мелких обломках кристаллов, если они в какой-то мере сохраняют естественные грани. сохраняют естественные грани. Закон постоянства гранных углов позволяет вывести для каждого  Закон постоянства гранных углов позволяет вывести для каждого естественного кристалла идеальную форму, которая естественного кристалла идеальную форму, которая характеризует свойственный данному кристаллу тип симметрии. тип симметрии. характеризует свойственный данному кристаллу Тип симметриии- сочетание кристаллографических элементов. сочетание кристаллографических элементов. Однако при одних и тех же гранных углах форма кристаллов Однако при одних и тех же гранных углах форма кристаллов может быть различна. может быть различна.  Тип симметриии-
Кристаллографические оси и элементы  Кристаллографические оси и элементы   Симметрия симметрии кристаллов симметрии кристаллов Симметрия — —- - это закономерность расположения это закономерность расположения элементов ограничения кристалла, выражающаяся в элементов ограничения кристалла, выражающаяся в повторяемости частей при вращении вокруг некоторой повторяемости частей при вращении вокруг некоторой прямой линии. прямой линии. Прямая линия, при повороте вокруг которой на один и тот  Прямая линия, при повороте вокруг которой на один и тот же угол все части кристалла симметрично повторяются nn же угол все части кристалла симметрично повторяются (обозначается буквой LL). ). осью симметрии (обозначается буквой раз, называется осью симметрии раз, называется Число nn,, показывает сколько раз при повороте на 360° показывает сколько раз при повороте на 360° вокруг оси симметрии части кристалла могут вокруг оси симметрии части кристалла могут совмещаться с их исходным положением и называется совмещаться с их исходным положением и называется порядком оси симметрии и обозначается цифрой порядком оси симметрии и обозначается цифрой (ставится внизу справа от LL).). (ставится внизу справа от Число nn всегда целое, и в кристаллах могут существовать всегда целое, и в кристаллах могут существовать оси симметрии только второго, третьего, четвертого и второго, третьего, четвертого и оси симметрии только шестого порядков. Так, при вращении вокруг оси порядков. Так, при вращении вокруг оси шестого кристалла, имеющего вид правильной шестигранной кристалла, имеющего вид правильной шестигранной призмы, при каждом повороте на 60° будет наблюдаться призмы, при каждом повороте на 60° будет наблюдаться совмещение его граней, ребер и вершин с их начальным совмещение его граней, ребер и вершин с их начальным положением. Следовательно, этот кристалл построен положением. Следовательно, этот кристалл построен симметрично, имеет ось симметрии шестого порядка. симметрично, имеет ось симметрии шестого порядка.  Число  Число
Элементы симметрии Элементы симметрии  Центр симметрии  Плоскость симметрии Плоскость симметрии — мысленно проведенная плоскость, — мысленно проведенная плоскость, которая делит кристаллы на две зеркально равные части которая делит кристаллы на две зеркально равные части (обозначается буквой Р ). Р ). В кубе таких плоскостей девять. В кубе таких плоскостей девять. (обозначается буквой Центр симметрии — точка внутри кристалла, на равных — точка внутри кристалла, на равных расстояниях от которой в диаметрально противоположных расстояниях от которой в диаметрально противоположных направлениях располагаются одинаковые элементы направлениях располагаются одинаковые элементы ограничения — параллельные грани, вершины ограничения — параллельные грани, вершины (обозначается буквой СС).). (обозначается буквой называются элементами Ось, плоскость и центр симметрии называются элементами симметрии. . Русский ученый А. В. Гадолин доказал, что у Русский ученый А. В. Гадолин доказал, что у симметрии кристаллов возможны 32 различные комбинации элементов кристаллов возможны 32 различные комбинации элементов симметрии, называемые видами симметрии, называемые симметрии. . симметрии Все виды симметрии группируются по степени сложности в  Все виды симметрии группируются по степени сложности в семь крупных групп, или систем — кристаллографических кристаллографических семь крупных групп, или систем — сингоний. . Среди них выделяются низшие, средние и Среди них выделяются низшие, средние и сингоний высшие. высшие.  Ось, плоскость и центр симметрии видами, , или классами или классами
Кристаллографические сингонии (системы) Кристаллографические сингонии (системы)
Низшие кристаллографические сингонии Низшие кристаллографические сингонии  Триклинная  Моноклинная сингония – – кристаллы имеют либо одну кристаллы имеют либо одну Триклинная сингония – кристаллы наименее симметричные. сингония – кристаллы наименее симметричные. (У них из всех возможных элементов симметрии обычно (У них из всех возможных элементов симметрии обычно наблюдается только центр симметрии, но иногда и он наблюдается только центр симметрии, но иногда и он отсутствует). Этот вид сингоний свойствен альбиту, отсутствует). Этот вид сингоний свойствен альбиту, микроклину и другим минералам. микроклину и другим минералам. Моноклинная сингония плоскость симметрии, либо одну ось второго порядка, либо плоскость симметрии, либо одну ось второго порядка, либо и ту и другую вместе в сочетании с центром симметрии. К и ту и другую вместе в сочетании с центром симметрии. К этой категории принадлежат ортоклаз, гипс, муско вит, этой категории принадлежат ортоклаз, гипс, муско вит, некоторые амфиболы. некоторые амфиболы. Ромбическая сингония кристаллы с одной или тремя осями сингония кристаллы с одной или тремя осями второго порядка и двумя или тремя плоскостями второго порядка и двумя или тремя плоскостями симметрии ((LL2222P P или или 33LL2233PCPC), ), а также кристаллы с тремя а также кристаллы с тремя симметрии осями второго порядка без плоскости симметрии (3LL22). В ). В осями второго порядка без плоскости симметрии (3 поперечном сечении они имеют- форму ромба. поперечном сечении они имеют- форму ромба.  Ромбическая
Средние кристаллографические сингонии Средние кристаллографические сингонии  Тетрагональная К средним сингониям относятся кристаллы только с одной  К средним сингониям относятся кристаллы только с одной осью симметрии высшего порядка; осью симметрии высшего порядка; Тетрагональная, или квадратная, сингония отличается , или квадратная, сингония отличается присутствием в кристаллах одной оси четвертого присутствием в кристаллах одной оси четвертого порядка. В сечении, перпендикулярном к этой оси, обычно порядка. В сечении, перпендикулярном к этой оси, обычно наблюдается форма квадрата или восьмиугольника. наблюдается форма квадрата или восьмиугольника. Высшим сочетанием элементов симметрии в квадратной Высшим сочетанием элементов симметрии в квадратной сингонии может быть LL4444LL2255PCPC. . Эта сингония присуща, Эта сингония присуща, сингонии может быть например, халькопириту и рутилу. например, халькопириту и рутилу. Гексагональная сингония характерна для кристаллов сингония характерна для кристаллов форма которых - шестигранная призма, грани которых, форма которых - шестигранная призма, грани которых, параллельны оси шестого порядка LL66.. Таковы кристаллы Таковы кристаллы параллельны оси шестого порядка апатита и нефелина. Высшее сочетание элементов Высшее сочетание элементов апатита и нефелина. симметрии в ней - LL6666LL22PCPC.. симметрии в ней - Тригональная сингонии высшее сочетание элементов сингонии высшее сочетание элементов  Тригональная симметрии— LL3333LL22 ЗРС. ЗРС. Типичная форма кристаллов Типичная форма кристаллов симметрии— данной сингонии, например кристаллов кальцита, данной сингонии, например кристаллов кальцита, доломита, магнезита, гематита,— ромбоэдры. доломита, магнезита, гематита,— ромбоэдры.  Гексагональная
Наиболее распространённые формы кристаллов различных  Наиболее распространённые формы кристаллов различных  сингоний сингоний 7-9-кристаллы  7-9-кристаллы ромбической ромбической сингонии, сингонии, 10-13-кристаллы  10-13-кристаллы тригональной тригональной сингонии, сингонии, 14-16-  14-16- гексагоначально гексагоначально й, й, 17-20-  17-20- тетрагональной, тетрагональной, 21-25-кубической  21-25-кубической
Высшие сингонии Высшие сингонии К высшей сингонии откосится только  К высшей сингонии откосится только кубическая, объединяющая наиболее , объединяющая наиболее кубическая симметричные кристаллы (каменная соль, симметричные кристаллы (каменная соль, пирит, алмаз, магнетит). Они имеют вид пирит, алмаз, магнетит). Они имеют вид кубов, октаэдров и др. Высшее сочетание кубов, октаэдров и др. Высшее сочетание элементов в кубической сингонии — 33LL4 4 44LLз з 66LL2 2 элементов в кубической сингонии — 99PCPC.. Изучением кристаллической формы и  Изучением кристаллической формы и структур минералов занимается наука структур минералов занимается наука кристаллография.. кристаллография