Презентация на тему "Решение простейших логарифмических неравенств"

  • Презентации учебные
  • pptx
  • 26.04.2018
Публикация в СМИ для учителей

Публикация в СМИ для учителей

Бесплатное участие. Свидетельство СМИ сразу.
Мгновенные 10 документов в портфолио.

При решении логарифмических неравенств следует учитывать общие свойства неравенств, свойство монотонности логарифмической функции и область её определения. Решение логарифмических неравенств имеет много общего с решением показательных неравенств: а) При переходе от логарифмов к выражениям, стоящим под знаком логарифма, мы также сравниваем основание логарифма с единицей; б) Если мы решаем логарифмическое неравенство с помощью замены переменных, то нужно решать относительно замены до получения простейшего неравенства. Однако, есть одно очень важное отличие: поскольку логарифмическая функция имеет ограниченную область определения, при переходе от логарифмов к выражениям, стоящим под знаком логарифма, необходимо учитывать область допустимых значений.Решение логарифмических неравенств имеет много общего с решением показательных неравенств: а) При переходе от логарифмов к выражениям, стоящим под знаком логарифма, мы также сравниваем основание логарифма с единицей; б) Если мы решаем логарифмическое неравенство с помощью замены переменных, то нужно решать относительно замены до получения простейшего неравенства. Однако, есть одно очень важное отличие: поскольку логарифмическая функция имеет ограниченную область определения, при переходе от логарифмов к выражениям, стоящим под знаком логарифма, необходимо учитывать область допустимых значений.
Иконка файла материала Решение простейших логарифмических неравенств.pptx
«РЕШЕНИЕ ПРОСТЕЙШИХ ЛОГАРИФМИЧЕСКИХ НЕРАВЕНСТВ»
ОБЩЕЕ МЕЖДУ ЛОГАРИФМИЧЕСКИМИ И ПОКАЗАТЕЛЬНЫМИ НЕРАВЕНСТВАМИ.  Решение логарифмических неравенств имеет много общего с решением показательных неравенств:  а) При переходе от логарифмов к выражениям, стоящим под знаком логарифма, мы также сравниваем основание логарифма с единицей;  б) Если мы решаем логарифмическое неравенство с помощью замены переменных, то нужно решать относительно замены до получения простейшего неравенства.  Однако, есть одно очень важное отличие: поскольку логарифмическая функция имеет ограниченную область определения, при переходе от логарифмов к выражениям, стоящим под знаком логарифма, необходимо учитывать область допустимых значений.
 Если при решении логарифмического уравнения можно найти корни уравнения, а потом сделать проверку, то при решении логарифмического неравенства этот номер не проходит: при переходе от логарифмов к выражениям, стоящим под знаком логарифма необходимо записывать ОДЗ неравенства. Простейшее логарифмическое неравенство имеет вид: где V – один из знаков неравенства: <,>, ≤ или ≥.
РЕШЕНИЕ ЛОГАРИФМИЧЕСКИХ НЕРАВЕНСТВ  Если основание логарифма больше единицы (a>1), то при переходе от логарифмов к выражениям, стоящим под знаком логарифма, знак неравенства сохраняется, и неравенство равносильно системе: o Если основание логарифма больше нуля и меньше единицы (0
ПРИМЕР  1. Решим  неравенство: Так как основание логарифмов в обеих частях неравенства меньше 1, при переходе к выражениям, стоящим под знаком логарифма, знак неравенства меняется на противоположный. Выражения, стоящие под знаком логарифма должны быть строго больше нуля. Перейдем к системе: Обратите внимание: мы указываем, что больше нуля должно быть меньшее из выражений, которые стоят под знаком логарифма. В этом случает большее выражение автоматически будет больше нуля. Решим систему неравенств: Корни квадратного трехчлена: x1=-3 , x2=2 Ответ:
НЕРАВЕНСТВА ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ: Log0,3(2x-4)>log0,3(x+1) Log4(2x+3)>log4(x-5) Lg(2x-3)>lg(x+1)