Презентация по геометрии на тему "Пространственные фигуры"

  • Презентации учебные
  • ppt
  • 24.03.2017
Публикация на сайте для учителей

Публикация педагогических разработок

Бесплатное участие. Свидетельство автора сразу.
Мгновенные 10 документов в портфолио.

Геометрические фигуры делятся на плоские и пространственные, в зависимости от того, все или не все точки фигуры принадлежат одной плоскости. Плоские фигуры вы изучали в предыдущих классах, тогда же вы познакомились и с некоторыми пространственными фигурами — призмой, пирамидой, цилиндром, конусом, шаром. Раздел геометрии, в котором изучаются плоские фигуры, называется планиметрией, а раздел, в котором изучаются пространственные фигуры, — стереометрией.
Иконка файла материала 3.Пространственные фигуры.ppt

МНОГОГРАННИКИ

Многогранником называется тело, поверхность которого состоит из конечного числа многоугольников, называемых гранями многогранника. Стороны и вершины этих многоугольников называются соответственно ребрами и вершинами многогранника.
Отрезки, соединяющие вершины многогранника, не принадлежащие одной грани, называются диагоналями многогранника.
Многогранник называется выпуклым, если вместе с любыми двумя своими точками он содержит и соединяющий их отрезок.
На рисунках приведены примеры выпуклых и невыпуклых многогранников

КРУГЛЫЕ ТЕЛА

Примерами пространственных фигур являются также знакомые вам:

шар и сфера.

конус, поверхность которого состоит из круга - основания конуса и свернутого кругового сектора - боковой поверхности конуса;

цилиндр, поверхность которого состоит из двух кругов - оснований цилиндра и свернутого прямоугольника - боковой поверхности;

КУБ 1

Кубом называется многогранник, поверхность которого состоит из шести квадратов.

Обычно куб изображается так, как показано на рисунке. А именно, рисуется квадрат ABB1A1, изображающий одну из граней куба, и равный ему квадрат DCC1D1, стороны которого параллельны соответствующим сторонам квадрата ABB1A1. Соответствующие вершины этих квадратов соединяются отрезками. Отрезки, изображающие невидимые ребра куба, проводятся пунктиром.

КУБ 2

На рисунках показаны несколько изображений куба.

На рисунке а) мы смотрим на куб сверху и справа; б) сверху и слева; в) снизу и справа; г) снизу и слева.

Упражнение 1

Изобразите куб на клетчатой бумаге, аналогично данному на рисунке.

Упражнение 2

На рисунке изображены три ребра куба. Изобразите весь куб.

Упражнение 3

На рисунке изображены три ребра куба. Изобразите весь куб.

Упражнение 4

На рисунке изображены три ребра куба. Изобразите весь куб.

Упражнение 5

На рисунке изображены три ребра куба. Изобразите весь куб.

ПАРАЛЛЕЛЕПИПЕД

Параллелепипедом называется многогранник, поверхность которого состоит из шести параллелограммов.

Прямоугольным параллелепипедом называется параллелепипед, грани которого – прямоугольники.

Обычно параллелепипед изображается так, как показано на рисунке. А именно, рисуется параллелограмм ABB1A1, изображающий одну из граней параллелепипеда, и равный ему параллелограмм DCC1D1, стороны которого параллельны соответствующим сторонам параллелограмма ABB1A1. Соответствующие вершины этих параллелограммов соединяются отрезками. Отрезки, изображающие невидимые ребра куба, проводятся пунктиром. В случае прямоугольного параллелепипеда вместо параллелограммов, изображающих две грани, рисуются равные прямоугольники.

ПАРАЛЛЕЛЕПИПЕД

На рисунках показаны несколько изображений прямоугольного параллелепипеда.

На рисунке а) мы смотрим на куб сверху и справа; б) сверху и слева; в) снизу и справа; г) снизу и слева.

Упражнение 1

Изобразите прямоугольный параллелепипед на клетчатой бумаге, аналогично данному на рисунке.

Упражнение 2

На рисунке изображены три ребра прямоугольного параллелепипеда. Изобразите весь параллелепипед.

Упражнение 3

На рисунке изображены три ребра прямоугольного параллелепипеда. Изобразите весь параллелепипед.

Упражнение 4

На рисунке изображены три ребра прямоугольного параллелепипеда. Изобразите весь параллелепипед.

Упражнение 5

На рисунке изображены три ребра прямоугольного параллелепипеда. Изобразите весь параллелепипед.

ПРИЗМА

Призмой называется многогранник, поверхность которого состоит из двух равных многоугольников, называемых основаниями призмы, и параллелограммов, имеющих общие стороны с каждым из оснований и называемых боковыми гранями призмы. Стороны боковых граней называются боковыми ребрами призмы.
Призма называется n-угольной, если ее основаниями являются n-угольники.

На рисунке изображена четырехугольная призма. ABCD и A1B1C1D1 – равные четырехугольники с соответственно параллельными сторонами. Соответствующие вершины этих четырехугольников соединены отрезками. Отрезки, изображающие невидимые ребра призмы, проводятся пунктиром.

ПРЯМАЯ ПРИЗМА

Призма называется прямой, если её боковые грани – прямоугольники.

На рисунке изображена прямая треугольная призма, ABB1A1 – прямоугольник.

ПРАВИЛЬНАЯ ПРИЗМА

Прямая призма называется правильной, если её основания – правильные многоугольники.

На рисунке изображена правильная шестиугольная призма. Ее основания изображаются шестиугольниками, противоположные стороны которых равны и параллельны. Боковые грани ABB1A1 и DEE1D1 изображаются прямоугольниками.

Упражнение 1

Изобразите треугольную призму на клетчатой бумаге, аналогично данной на рисунке.

Упражнение 2

Изобразите правильную шестиугольную призму на клетчатой бумаге, аналогично данной на рисунке.

Упражнение 3

На рисунке изображены три ребра треугольной призмы. Изобразите всю призму.

Упражнение 4

На рисунке изображены три ребра треугольной призмы. Изобразите всю призму.

Упражнение 5

На рисунке изображены четыре ребра шестиугольной призмы. Изобразите всю призму.

Упражнение 6

На рисунке изображены четыре ребра шестиугольной призмы. Изобразите всю призму.

Упражнение 7

Существует ли призма, которая имеет:

Ответ: Нет.

а) 4 ребра?

Ответ: Нет.

Ответ: Да.

Ответ: Да.

б) 6 рёбер?

в) 12 рёбер?

г) 21 ребро?

Упражнение 8

Какой многоугольник лежит в основании призмы, которая имеет:

Ответ: Шестиугольник.

а) 18 рёбер?

б) 24 вершины?

в) 36 граней?

Ответ: Двенадцатиугольник.

Ответ: Тридцатичетырёхугольник.

ПИРАМИДА

Пирамидой называется многогранник, поверхность которого состоит из многоугольника, называемого основанием пирамиды, и треугольников с общей вершиной, называемых боковыми гранями пирамиды. Стороны боковых граней называются боковыми ребрами пирамиды. Общая вершина боковых граней называется вершиной пирамиды
Пирамида называется n-угольной, если ее основанием является n-угольник.

На рисунке изображена четырехугольная пирамида. Четырехугольник ABCD – основание, S – вершина пирамиды.

ПРАВИЛЬНАЯ ПИРАМИДА

Пирамида называется правильной, если её основание – правильный многоугольник и все боковые ребра равны.

На рисунках изображены правильная четырехугольная и правильная шестиугольная пирамиды. Их основания изображаются соответственно параллелограммом и шестиугольником, противоположные стороны которого равны и параллельны.

Упражнение 1

Изобразите правильную четырехугольную пирамиду на клетчатой бумаге, аналогично данной на рисунке.

Упражнение 2

Изобразите правильную шестиугольную пирамиду на клетчатой бумаге, аналогично данной на рисунке.

Упражнение 3

На рисунке изображены три ребра четырехугольной пирамиды. Изобразите всю пирамиду.

Упражнение 4

На рисунке изображены три ребра четырехугольной пирамиды. Изобразите всю пирамиду.

Упражнение 5

На рисунке изображены четыре ребра шестиугольной пирамиды. Изобразите всю пирамиду.

Упражнение 6

На рисунке изображены четыре ребра шестиугольной пирамиды. Изобразите всю пирамиду.

Упражнение 7

Существует ли пирамида, которая имеет:

а) 10 ребер?

б) 6 рёбер?

в) 24 ребра?

г) 33 ребра?

Ответ: Да.

Ответ: Да.

Ответ: Да.

Ответ: Нет.

Упражнение 8

Какой многоугольник лежит в основании пирамиды, которая имеет:

Ответ: 59-угольник.

а) 8 рёбер?

б) 22 вершины?

в) 60 граней?

Ответ: 4-угольник.

Ответ: 21-угольник.

Многогранники 1

У многогранника шесть вершин и в каждой из них сходится четыре ребра. Сколько у него рёбер?

Многогранники 2

У многогранника двенадцать граней и все они пятиугольные. Сколько у него рёбер?

Многогранники 3

Сколько рёбер может сходиться в вершине многогранника?

Ответ: Любое число, не меньшее 3.

Многогранники 4

Существуют ли многогранники, отличные от куба, все грани которых – квадраты?

Многогранники 5

Существуют ли многогранники, отличные от параллелепипеда, все грани которых – параллелограммы?

Многогранники 6

Существуют ли многогранник, у которого:

а) 5 ребер?

Нет.

б) 6 ребер?

Да, тетраэдр.

в) 7 ребер?

Нет.

г) 8 ребер?

Да, четырехугольная пирамида.

д) 9 ребер?

Да, треугольная призма.

е) 10 ребер?

Да, пятиугольная пирамида.

ж)* 11 ребер?

Да, пример такого многогранника изображен на рисунке.

РАЗВЕРТКА МНОГОГРАННИКА

Если поверхность многогранника разрезать по некоторым ребрам и развернуть ее на плоскость так, чтобы все многоугольники, входящие в эту поверхность, лежали в данной плоскости, то полученная фигура на плоскости называется разверткой многогранника. Например, на рисунке изображены развертки куба и треугольной пирамиды.

РАЗВЕРТКА МНОГОГРАННИКА

Для изготовления модели многогранника из плотной бумаги, картона или другого материала достаточно изготовить его развертку и затем склеить соответствующие ребра. Для удобства склейки развертку многогранника изготавливают с клапанами, по которым и производится склейка.

Упражнение 1

Укажите развертки куба.

Ответ. в), д), ж).

Упражнение 2

Укажите развертки треугольной призмы.

Ответ. а), б), в), д), ж).

Упражнение 3

Укажите развертки треугольной пирамиды.

Ответ. а), б), в), д).

Упражнение 4

Укажите развертки четырехугольной пирамиды.

Ответ. а), б), д), е).