Число делится на 2, если оно заканчивается четной цифрой или нулём.
Числа 2346 и 3650 - делятся на 2. Число 4521 - не делится на 2.
Число делится на 4, если две последние его цифры нули или образуют число, делящееся на 4. В остальных случаях - не делится.
Числа 31700 и 16608 -делятся на 4. 215634 – не делится на 4.
Признаки делимости на 2 и 4:
На 3 делятся только те числа, у которых сумма цифр делится на 3.
Числа 17835 и 5472 – делятся на 3. Число 105499 – не делится на 3.
На 9 делятся только те числа, у которых сумма цифр делится на 9.
Числа 2376 и 342000 – делятся на 9. Число 106499 – не делится на 9.
Признаки делимости на 3 и 9:
Число делится на 8, если три последние цифры его нули или образуют число, делящееся на 8. В остальных случаях - не делится.
Числа 125000 и 111120 – делятся на 8. Числа 170004 и 124300 – не делятся на 8.
Число делится на 6, если оно делится одновременно на 2 и на 3. В противном случае - не делится.
Числа 126 и 254610 – делятся на 6. Числа 3585 и 6574 - не делятся на 6.
Признаки делимости на 8 и 6:
На 5 делятся числа, последняя цифра которых 0 или 5. Другие - не делятся.
Числа 245 и 56780 – делятся на 5. Числа 451 и 678 – не делятся на 5.
На 25 делятся числа, две последние цифры которых нули или образуют число, делящееся на 25 (т. е. числа, оканчивающиеся на 00, 25, 50 или 75). Другие не делятся.
Числа 7150 и 345600 – делятся на 25. Число 56755 – не делится на 25.
Признаки делимости на 5 и 25:
На 10 делятся только те числа, последняя цифра которых нуль, на 100 - только те числа, у которых две последние цифры нули, на 1000 - только те, у которых три последние цифры нули.
Число 34680 – делится на 10. Число 56700 – делится на 100 и на 10. Число 87549000 - делится на 10, 100 и 1000. Числа 75864, 7776539 и 9864032 – не делятся на 10, 100 и 1000.
Признаки делимости на 10, 100 и 1000:
На 11 делятся только те числа, у которых сумма цифр, занимающих нечетные места, либо равна сумме цифр, занимающих четные места, либо разнится от нее на число, делящееся на 11.
Число 103785 делится на 11, так как сумма цифр, занимающих нечетные места, 1+3+8=12 равна сумме цифр, занимающих четные места 0+7+5=12.
Число 9163627 делится на 11, так как сумма цифр, занимающих нечетные места, есть 9 + 6 + 6 + 7 = 28, а сумма цифр, занимающих четные места, есть 1 + 3 +2 =6; разность между числами 28 и 6 есть 22, а это число делится на 11.Число 461025 не делится на 11, так как числа 4+ 1 + 2 = 7 и б +0 + 5=11 не равны друг другу, а их разность 11 -7 = 4 на 11 не делится.
Признак делимости на 11:
Если нужно выяснить, делится ли заданное число на некоторое составное число, необходимо разложить это составное число на множители ( признаки которых вам известны) и проверить делимость исходного числа на эти множители.
Если число делится на 27, то это число должно делится на 9 и 3;
Если число делится на 24, то оно должно делится на 6 и 4;
На какие числа должно делится число, делящееся на 18? На 36?
Делимость на составные числа:
Известно, что число при делении на 3 даёт в остатке 2. Найти несколько таких чисел. Если число делится на 3, его можно представить в виде : 3п ( п – порядковый номер числа). Если число дает в остатке 2, его можно представить в виде: 3п + 2. Получаем числа: при п = 1 – 5, при п = 2 – 8, при п = 5 – 17, при п = 12 – 38.
Известно, что число при делении на 5, даёт в остатке 3. Найдите любые 4 таких числа. Если число делится на 5, его можно представить в виде : 5п . Если число дает в остатке 3, его можно представить в виде: 5п + 3.
Получаем числа: при п = 4 – 23, при п = 7 – 38, при п = 10 – 53, при п = 15 – 78.
Деление с остатком:
Известно, что число при делении на 7, даёт в остатке 4. Найдите три таких числа.
Известно, что число при делении на 4, даёт в остатке 3. Найдите такие числа стоящие на 5, 10 и 12 местах.
Что означает запись: 8п + 3 ?
Придумайте задание к следующей записи:
2п +1.
Задачи устно
Если число делится на 27, тогда оно делится на 3 и на 9. Число делится на 9, тогда и только тогда, когда сумма цифр числа делится на 9. Число делится на 3, тогда и только тогда, когда сумма цифр числа делится на 3. Заметим, что, если число делится на 9,то оно делится и на 3. Сумма цифр числа 123456 равна 1 + 2 + 3 + 4 + 5 + 6 = 21. Вычеркнув числа 2, 4 и 6 получим, число, сумма цифр которого равна девяти. Девять делится на девять.
Ответ: 135.
Задача №1. Вычеркните в числе 123456 три цифры так, чтобы получившееся трёхзначное число делилось на 27. В ответе укажите получившееся число.
Если число делится на 30, то оно также делится на 3 и на 10. Поэтому в последнем разряде числа должен быть ноль. Тогда вычёркиваем 41. Остаётся 1415650. Для того, чтобы число делилось на три необходимо, чтобы сумма цифр была кратна трём, значит, нужно вычеркнуть цифру 1 или цифру 4. Таким образом, получаем числа 145650, 115650 и 415650
Ответ: 145650, 115650 или 415650.
Задача №2. Вычеркните в числе 141565041 три цифры так, чтобы получившееся число делилось на 30. В ответе укажите ровно одно получившееся число.
Если число делится на 24, то оно также делится на 3 и на 8.
.Перебрав трёхзначные числа из 1 и 2, получим, что только 112 делится на 8. Это число образует последние три цифры искомого числа.
Последние три цифры 112 дают к сумме 4. Рассмотрим первые три цифры. Их сумма может быть от 3 до 6. Условиям задачи удовлетворяет сумма цифр, равная 5. Троек с данной суммой цифр три: 122, 212, 221.
Таким образом, подходят числа: 122112, 212112, 221112.
Задача №3. Приведите пример шестизначного натурального числа, которое записывается только цифрами 1 и 2 и делится на 24. В ответе укажите ровно одно такое число.
Чтобы число делилось на 24 оно должно делится на 3 и на 8.
Число делится на 8, если три его последние цифры образуют число, делящееся на 8. Искомое число записывается только нулями и единицами, значит, оно заканчивается на 000.
Число делится на 3, если его сумма цифр числа делится на 3. Поскольку три последние цифры числа нули, первые три должны быть единицами.
Таким образом, единственное число, удовлетворяющее условию задачи, это число 111 000.
Ответ: 111 000.
Задача №4. Найдите шестизначное натуральное число, которое записывается только цифрами 1 и 0 и делится на 24.
Разложим число 20 на слагаемые различными способами:
20 = 9 + 9 + 2 = 9 + 8 + 3 = 9 + 7 + 4 = 9 + 6 + 5 = 8 + 8 + 4 = 8 + 7 + 5 = 8 + 6 + 6 = 7 + 7 + 6.
При разложении способами 1−4, 7 и 8 суммы квадратов чисел не кратны трём. При разложении пятым способом сумма квадратов кратна девяти. Разложение шестым способом удовлетворяет условиям задачи. Таким образом, условию задачи удовлетворяет любое число, записанное цифрами 5, 7 и 8, например, число 578.
Задача №5. Приведите пример трёхзначного числа, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9.
Число делится на 88, если оно делится на 8 и на 11. Используя признак делимости на 8, и учитывая, что все цифры искомого числа должны быть чётны и различны получаем, что последними цифрами числа могут быть: 024, 048, 064, 208, 240, 248, 264, 280, 408, 480, 608, 624, 640, 648, 680, 824, 840, 864. Используя признак делимости на 11 получим, что условию задачи удовлетворяют числа: 6248, 8624, 2640.
Ответ: 2640, 6248 или 8624.
Задача №6. Приведите пример трёхзначного числа, сумма цифр которого равна 20, а сумма квадратов цифр делится на 3, но не делится на 9.
Можно заметить, что если среди цифр есть хотя бы две единицы, то равенство невозможно, так как сумма будет больше произведения. То же самое, если единиц нет вообще. В этом случае произведение будет слишком большое. Таким образом, среди цифр есть ровно одна единица. Число делится на 4, значит, последняя цифра чётная, а это значит, что произведение тоже чётное. А значит, и сумма. И так как последняя цифра чётная, то оставшиеся две цифры должны быть одной чётности. А так как мы выяснили, что среди цифр есть ровно одна единица, то эти числа нечётные. Под эти ограничения подходят числа: 132, 136, 152, 156, 172, 176, 192, 196, 312, 316, 512, 516, 712, 716, 912, 916, из которых удовлетворяют всем условиям только числа 132 и 312.
Задача №7. Приведите пример трёхзначного натурального числа, кратного 4, сумма цифр которого равна их произведению. В ответе укажите ровно одно такое число.
Задача 1366. Найдите шестизначное натуральное число, которое записывается только цифрами 2 и 0 и делится на 24. В ответе укажите какое-нибудь одно такое число.
Искомое натуральное число делится на 24, следовательно, оно делится на 3 и на 8.
Число делится на 3, если сумма его цифр кратна 3.
Число делится на 8, если три его последние цифры делятся на 8 или являются нулями.
Чтобы искомое число делилось на 3, оно должно состоять из шести цифр 2, или из трех цифр 2 и трех цифр 0.
222 не делится на 8, поэтому первый вариант нас не устраивает.
Значит искомое число состоит трех цифр 2 и трех цифр 0.
На 8 в этом случае делится, например, такое число: 222000
Ответ: 222000
Задача 1376. Найдите трехзначное натуральное число, которое при делении на 4, на 5 и на 6 дает в остатке 2 и все цифры которого четные. В ответе укажите какое-нибудь одно такое число.
Сначала найдем число, которое делится на 4 , на 5 и на 6 .
Если число делится на 5 , то его последняя цифра 0 или 5 .
Если число делится на 4 , то две его последние цифры образуют число, которое делится на 4 , или две его последние цифры нули.
Если число делится на 6 , то оно делится на 2 и на 3 , так как 6=2х3 .
Если число делится на 2 , то его последняя цифра - четная. И если число делится на 3 , то сумма его цифр делится на 3 .
Тогда для двух последних цифр искомого числа существуют такие варианты:
Так как сумма цифр числа делится на 3 , и все цифры четные, получаем такие варианты для первой цифры:
Далее. По условию искомое число при делении на 4 , на 5 и на 6 дает в остатке 2 . Это значит, что если из искомого числа вычесть 2 , то мы получим число, которое делится без остатка на 4 , на 5 и на 6 . То есть чтобы получить искомое число, нужно к числам, записанным в таблице прибавить 2 .
Таким образом, искомым числом может быть одно из следующих:
Ответ: 602 или 422 или 242 или 842 или 662 или 482
Задача 1398. Вычеркните в числе 181615121 три цифры так, чтобы получившееся число делилось на 12. В ответе укажите какое-нибудь одно такое число.
Так как искомое число делится на 12, следовательно, оно делится на 4 и на 3 .
Следовательно, две его последние цифры образуют число, которое делится на 4 , или две его последние цифры нули (признак делимости на 4 ). И сумма его цифр делится на 3 (признак делимости на 3).
Таким образом, точно нужно вычеркнуть последнюю цифру, чтобы две последние цифры образовывали число 12, которое делится на 4 :
181615121
Теперь нужно вычеркнуть еще две цифры так, чтобы сумма цифр числа делилась на 3 . Сумма всех оставшихся цифр равна 1+8+1+6+1+5+1+2=25 Ближайшие числа, которые делятся на 3 это 24,21,18,15 …
Получить 24 не получится, так как 24=25-1 - нужно вычеркнуть только одну цифру , а нужно вычеркнуть две.
Чтобы получить 21 нужно из 25 вычесть 4 - это также не получится сделать, зачеркнув две цифры.
Чтобы получить 18 нужно из 25 вычесть 7 . 7=6+1. Значит, нужно вычеркнуть цифру 6 и цифру 1 .
То есть так:181615121
или так:
181615121
или так:
181615121
Аналогичным образом можно попробовать получить сумму цифр 15,12, и т.д.
Но нам достаточно того, что получилось.
Ответ:811512 или 181512 .
Задача 6089. Найдите трехзначное число , обладающее следующими свойствами:Сумма цифр числа делится на 6 Сумма цифр числа А+3 делится 6 Число А больше 350 и меньше 400 В ответе укажите какое-нибудь одно такое число.
Легко проверить, что если последняя цифра числа меньше 7 , то сумма цифр А+3 числа будет на 3 больше, чем сумма цифр числа А . В этом случае, поскольку по условию сумма цифр числа А делится на 6 , сумма цифр числа А +3 не будет делить на 6 .
Следовательно, последняя цифра числа должна быть больше или равна 7 .
Рассмотрим числа в интервале от 350 до 400, последняя цифра которых больше или равна .
Проверим число 357 . Сумма цифр не делится на 6 .
Проверим число 358 . Сумма цифр не делится на 6 .
Проверим число 359. Сумма цифр не делится на 6 .
Проверим число 367. Сумма цифр не делится на 6 .
Проверим число 368 . Сумма цифр не делится на 6 .
Проверим число 369. Сумма цифр делится на 6. 369+3=372 - сумма цифр также делится на 6 .
Итак, искомое число 369 .
Ответ: 369
Задача 6100. Найдите четырехзначное число, кратное 15, произведение цифр которого больше 35 но меньше 45. В ответе укажите какое-нибудь одно такое число.
Если число кратно 15 , то оно делится на 3 и на 5
Если число делится на 5 , то его последняя цифра 0 или 5 .
Последняя цифра не может быть 0 , так как в этом случае произведение цифр будет равно нулю. Следовательно, последняя цифра равна .
Отсюда произведение трех оставшихся цифр больше чем 35:5=7 и меньше чем 45:5=9
Итак, у нас есть произведение трех цифр, которое больше чем 7 но меньше чем 9. Следовательно, произведение трех первых цифр равно 8.
Тогда возможные варианты искомого числа (порядок первых трех цифр произвольный):
1185
1245
Кроме того, поскольку искомое число еще делится на 3 , сумма всех цифр числа, включая последнюю цифру 5 делится на 3 .
Сумма цифр числа 1245 делится на 3.
Следовательно, искомое число равно 1245 . (Также нам подойдут все числа, полученные из числа перестановкой первых трех цифр.)
Ответ: 1245.
Задача 6112. Найдите четырехзначное число, кратное 12, произведение цифр которого равно 10. В ответе укажите какое-нибудь одно такое число.
Если число кратно 12, то оно делится на3 и на 4 .
Следовательно, две его последние цифры образуют число, которое делится на 4, или две его последние цифры нули (признак делимости на 4 ). И сумма его цифр делится на 3 (признак делимости на 3 ).
Последние цифры не могут быть нулями, так как в этом случае произведение цифр будет равно нулю.Число 10 раскладывается на множители двумя способами: 1х10=10
- этот вариант нам не подходит, так как 10 не является цифрой.
Следовательно, число 10 можно представить в виде произведения четырех множителей как 10=1х1х2х5 .
Таким образом, число, которое мы ищем записывается цифрами 1,1,2,5 сумма которых равна 9. Следовательно число, записанное этими цифрами делится на 3 .
Две последние цифры должны составлять число, которое делится на 4 - это может быть 12 или 52.Таким образом, получим числа 1512 (или 5112) или 1152
Ответ:1512 или 5112 или 1152.
Задача 6123. Найдите четырехзначное число, кратное 44, любые две соседние цифры которого отличаются на 1. В ответе укажите какое-нибудь одно такое число.
Если число кратно 44 , то оно делится на 4 и на 11.
Следовательно, две его последние цифры образуют число, которое делится на 4 , или две его последние цифры нули (признак делимости на 4 ). Последние две цифры не могут быть нулями, так как по условию любые две соседние цифры числа отличаются на 1.
Число делится на 11, если сумма цифр, стоящих на четных местах равна сумме цифр, стоящих на нечетных местах, или разность этих сумм кратна 11. (Признак делимости на 11).
Последними двумя двумя цифрами могут быть, например, 12 или 32 - числа 12 и 32 делятся на 4 и цифры, составляющие эти числа отличаются на 1.
Тогда это могут быть, например, числа 3212 или 1232
В обоих числах суммы цифр стоящих на четных и нечетных местах равны 4.
также подходят числа 1012, 3432, 5456, 5676.
Ответ: 3212, 1232, 1012, 3432, 5456, 5676.
Задача 6134. Найдите четырехзначное число, кратное 66, все цифры которого различны и четны. В ответе укажите какое-нибудь одно такое число.
Если число кратно 66, то оно делится на 3, на 11 и на 2.
Следовательно, его последняя цифра четная, сумма цифр делится на 3, сумма цифр, стоящих на четных местах равна сумме цифр стоящих на нечетных местах, или разность этих сумм кратна 11.
Последнее невозможно, так как все цифры четные.
Так как сумма цифр, стоящих на четных местах равна сумме цифр стоящих на нечетных местах и сумма всех цифр делится на 3, каждая сумма делится на 3.
Этим условиям удовлетворяют, например, числа:
6402
6204
4620
2640
2046
4026
Ответ: 6402, 6204, 4620, 2640, 2046, 4026
Задача 6176. Найдите трехзначное число, кратное 70, все цифры которого различны, а сумма квадратов цифр делится на 5, но не делится на 25. В ответе укажите какое-нибудь одно такое число.
Если число кратно 70 , то оно делится на 7, и на 10 .
Следовательно, последняя цифра - 0. Выпишем трехзначные числа, кратные 70:
140, 210, 280, 350, 420, 490, 560, 630, 700, 770, 840, 910, 980.
Вычеркнем содержащие одинаковые цифры:
140, 210, 280, 350, 420, 490, 560, 630, 700, 770, 840, 910, 980.
Сумма квадратов цифр делится на 5, но не делится на 25 у чисел 210, 420, 630, 840, 980
Ответ: 210, 420, 630, 840, 980
Задача 6186. Найдите трехзначное натуральное число, большее 400 но меньшее 650, которое делится на каждую свою цифру, и все цифры которого различны и не равны нулю. В ответе укажите какое-нибудь одно такое число.
Так как число больше 400 но меньше 650, первой цифрой числа могут быть цифры 4, 5 или 6.
Рассмотрим случай, когда первая цифра 4. Тогда число делится на 4, следовательно две его последние цифры образуют число, которое делится на 4. Если число делится на 4, оно также делится на 2.
Кроме того, любое число делится на 1.
Из этих соображений нам подойдет число 412.
Ответ: например, 412.
Задача 6198. Найдите трехзначное натуральное число большее 500, которое при делении на 5 и на 8 дает равные ненулевые остатки и средняя цифра которого является средним арифметическим крайних цифр. В ответе укажите какое-нибудь одно такое число
Найдем числа, которые делятся без остатка на 5 и на 8. Так как 5 и 8 взаимно простые числа, искомое число за вычетом остатка должно делиться на 40.
Так как искомое число за вычетом остатка делится на 4 и оканчивается на 0, вторая цифра числа обязательно четная.
Чтобы получить искомое число, нужно к числу, которое делится на 40 без остатка прибавить остаток.
Остатком от деления на 5 могут быть числа 1, 2, 3, 4. Следовательно, остаток от деления искомого числа на 5 и на 8 может быть одним из этих чисел.
Пусть первая цифра числа равна 5. Чтобы получить четную цифру на втором месте, остаток должен быть нечетным.
Тогда возможны варианты:
531 (остаток 1)
543 (остаток 3)
Вычтем остаток из этих чисел и проверим, делятся ли полученные числа на 40 без остатка. Ни 530, ни 540 на 40 не делятся.
Пусть первая цифра равна 6. Тогда, чтобы получить четную цифру на втором месте, остаток должен быть четным.
Возможны варианты:
642 (остаток 2)
654 (остаток 4)
Вычтем остаток из этих чисел и проверим, делятся ли полученные числа на 40 без остатка. Число 640 делится на 40 без остатка.
Можно продолжить эти рассуждения и получит другие числа.
Ответ: 642.
Задача 6220. Найдите трехзначное натуральное число, кратно 4, сумма цифр которого равна их произведению. В ответе укажите какое-нибудь одно такое число.
Сумма трех цифр равна их произведению, например, в том случае, если это цифры 1, 2, 3.
Составим из этих цифр число, которое делится на 4. Две последние цифры этого числа должны образовать число, которое делится на 4. Это может быть 12 или 32. В таком случае искомым числом может быть одно из чисел 321 или 132.
Ответ: 312, 132.
© ООО «Знанио»
С вами с 2009 года.