Методы решения задач на смеси и сплавы.
Текстовые задачи входят в базовую часть ГИА. Кроме того, решение задач способствует развитию логического мышления, сообразительности и наблюдательности, умения самостоятельно осуществлять небольшие исследования. Задачи на смеси и сплавы при первом знакомстве с ними вызывают у учащихся общеобразовательных классов затруднения. Самостоятельно справиться с ними могут немногие.
При решении задач на смеси, сплавы и растворы следует иметь в виду, что к задачам по химии данные задачи отношения не имеют. В них не происходит химических реакций, вещества не испаряются, не переходят друг в друга.
При решении задач о смесях, сплавах, растворах используют следующие допущения:
1) все полученные смеси, сплавы, растворы считаются однородными;
2) не делается различия между литром как мерой вместимости сосуда и литром как мерой количества жидкости (или газа);
3) смешивание различных растворов происходит мгновенно;
4) объем смеси равен сумме объемов смешиваемых растворов;
5) объемы растворов и массы сплавов не могут быть отрицательными.
Задачи на смеси (сплавы) можно разделить на два вида:
1.Задаются, например, две смеси (сплава) с массами m1 и m2 и с концентрациями в них некоторого вещества. Смеси (сплавы) сливают (сплавляют). Требуется определить массу этого вещества в новой смеси (сплаве) и его новую концентрацию.
2.Задается некоторый объем смеси (сплава) и от этого объема начинают отливать (убирать) определенное количество смеси (сплава), а затем доливать (добавлять) такое же или другое количество смеси (сплава) с такой же концентрацией данного вещества или с другой концентрацией. Эта операция проводится несколько раз.
Задачи на смешивание растворов решают с помощью составления уравнения или системы уравнений. Главное внимание при обучении учащихся способу решения текстовых задач
методом составления уравнений должно быть обращено на сознательную отработку этапности решения
В процессе решения каждой такой задачи целесообразно действовать по следующей схеме.
1. Изучение условия задачи. Выбор неизвестных величин (их обозначаем буквами х, у и т.д.), относительно которых составляем пропорции. Выбирая неизвестные параметры, мы создаем математическую модель ситуации, описанной в условии задачи.
2. Поиск плана решения. Используя условия задачи, определяем все взаимосвязи между данными величинами.
3. Осуществление плана, т.е. оформление найденного решения – переход от словесной формулировки к составлению математической модели.
4. Изучение полученного решения, критический анализ результата.
Графический метод (составление рисунка).
1)
Смешали 4 литра 15–процентного водного раствора некоторого вещества с 6
литрами 25–процентного водного раствора этого же вещества. Сколько процентов
составляет концентрация получившегося раствора? 2. 2.
2) Имеется 2 сплава золота и серебра, в одном количество этих металлов находится в отношении 2:3, а в другом – в отношении 3:7. Сколько нужно взять каждого сплава, чтобы получить 8 кг нового сплава, в котором золото и серебро были в отношении 5:11?
1сплав Хкг |
|
2 сплав (х-8) |
|
3 сплав 8 кг |
|
+ |
|
= |
|
|
|
|
|
|
Решая любое из уравнений получаем 1 сплав -1кг, 2 сплав -7 кг
3) В 500 кг руды содержится некоторое количество железа. После удаления из руды 200 кг примесей, содержащих в среднем 12,5 % железа, содержание железа в оставшейся руде повысилось на 20 %. Определите, какое количество железа осталось ещё в руде?
500 кг руда |
|
200 кг -примеси |
|
300 кг. |
Х кг –железо
|
- |
12,5%- железо от 200кг (12,5 х 200): 100= 25 кг |
= |
|
=
+
Х = 212,5 кг
212,5 -25 = 187,5 кг железа осталось в руде
4) Виноград содержит 90% влаги, а изюм – 5%. Сколько килограммов винограда требуется для получения 20 килограммов изюма?
Виноград - Х кг |
|
Изюм 20 кг |
|
||
Вода 90% |
Сухое вещ-во 10% от Х -19кг |
|
Вода 5% |
Сухое вещ-во 95% от20 -0.95х20= 19 кг |
|
0,1Х =19 Х= 190 кг винограда нужно Ответ: 19 кг.
5. Бронза – сплав меди и олова. В древности из бронзы отливали колокола, если в ней содержалось 75% меди. К куску бронзы 500кг и содержащему 72% добавили некоторое количество бронзы, содержащей 80% меди и получили бронзу, необходимую для изготовления колокола. Определите сколько добавили 80% бронзы.
Решение с помощью таблицы.
% меди |
72 |
80 |
75 |
Масса сплава (кг) |
500 |
Х |
500+ Х |
Масса меди |
0,72 х500 = 360 |
0,8х Х |
0,75х (500+х) или 360 +0,8Х |
Получаем урвнение 0,75х (500+Х) = 360 +0,8Х, 375 - 360 = 0,05 Х, Х = 300
Ответ:300кг.
6. Для приготовления смеси из двух жидкостей А и В было взято 16 литров жидкости А и разлито в два сосуда объемом по 16 литров каждый. Затем первый сосуд был долит жидкостью В и произведено перемешивание. Полученной смесью был дополнен сверху второй сосуд. Если отлить из второго сосуда в первый 8 литров получившийся смеси, то в первом сосуде будет жидкости А на три литра больше, чем во втором. Сколько всего использовано жидкости В для приготовления смеси?
Решение.
1 сосуд х – жидкость А
и (16-х) - жидкость В
- доля жидкости А,
- доля В
2 сосуд: первоначально в
нём (16-х) жидкости А. Смесью из первого сосуда заполнили второй сосуд, так как
в нём имеется (16-х) жидкости А, следовательно, дополнительно можно добавить
только х литров смеси из первого сосуда. При этом во второй сосуд добавляется
х∙ жидкости А и
х∙ жидкости В, таким
образом во втором сосуде
жидкости А стало + (16-х) и х∙
жидкости В.
Доля жидкости А во втором сосуде ( + (16-х) ): 16, доля
жидкости В во втором сосуде х∙
Отлили из второго сосуда в первый 8 литров
получившийся смеси, следовательно в первый сосуд поступило 8∙ жидкости А , в
результате стало в первом сосуде
(Х - ) +
. В первом сосуде будет
жидкости А на три литра больше, чем во втором, во втором осталось 8∙
жидкости А(в сосуде
всего 16 литров жидкости, отлив 8 литров в сосуде остаётся 8л). Следовательно (Х
-
) = 3. Решаем уравнение
получаем жидкость А составляет в первом сосуде 4 или 12 литров, следовательно жидкости
В для приготовления смеси использовали 12л или 4л.
Ответ: 4литра, если в первый сосуд первоначально налили 12 литров жидкости А; 12 литров, если в первый сосуд первоначально налили 4 литра жидкости А.
ЗАДАЧИ из открытого банка ФИПИ
1. В лаборатории изготовили 1кг 16% солевого раствора. Через неделю из этого раствора испарилось 200г воды. Какова стала концентрация соли в растворе?
Ответ:20%.
2. При выплавке стали из чугуна, выжигается углерод. Содержание углерода в чугуне 4%. Сколько тонн углерода нужно выжечь из 245т чугуна, чтобы получилась сталь с содержанием углерода 2%?
Ответ:5т.
3. Имеется 600г сплава золота и серебра содержащего золото и серебро в отношении 1:5 соответственно. Сколько грамм золота необходимо добавить к этому сплаву чтобы получить новый сплав содержащий 50% серебра.
Ответ:400г.
4. Слиток сплава меди и цинка массой 36 кг содержит 45% меди. Какую массу меди надо добавить к этому куску, чтобы полученный сплав содержал 60% меди?
Ответ:13,5кг.
5. После смешивания двух растворов, один из которых содержал 48 г, а другой — 20 г безводного йодистого калия, получилось 200 г нового раствора. Найдите концентрацию каждого из первоначальных растворов, если концентрация первого на 15% больше концентрации второго.
Ответ:40% и 25%.
6. Имелось два слитка меди. Процент содержания меди в первом слитке на 40% меньше, чем во втором. После того как оба слитка сплавили, получился слиток, содержащий 36% меди. Найдите процентное содержание меди в каждом слитке, если в первом было 6 кг меди, а во втором — 12 кг.
Ответ:20% и 60%
8. Сколько чистого спирта нужно добавить к 735 г 16%-ного раствора йода и спирта, чтобы получить 10%-ный раствор?
Ответ:441г.
9. Смешали 30%-ный раствор соляной кислоты с ее 10%-ным раствором и получили 600 г 15%-ного раствора. Сколько граммов 30 % -ного раствора было взято?
Ответ:150г.
10. В сосуде находится 10%-ный раствор спирта. Из сосуда отлили 1/3 содержимого, а оставшуюся часть долили водой так, что сосуд оказался заполненным на 5/6 первоначального объема. Какое процентное содержание спирта оказалось в сосуде?
Ответ:8%.
11. Имеются два слитка, состоящие из цинка, меди и олова. Известно, что первый слиток массой 150 кг содержит 40% олова, а второй массой 250 кг — 26% меди. Процентное содержание цинка в обоих слитках одинаково. Сплавив первый и второй слитки, получили сплав, в котором оказалось 30% цинка. Сколько килограммов олова содержится в полученном сплаве?
Ответ:170 кг.
12. Имеются два сплава, состоящие из меди, цинка и олова. Известно, что первый сплав содержит 25% цинка, а второй — 50% меди. Процентное содержание олова в первом сплаве в 2 раза меньше, чем во втором. Сплавив 200 кг первого сплава и 300 кг второго, получили новый сплав, в котором оказалось 28% цинка. Определите, сколько килограммов меди содержится в получившемся новом сплаве.
Ответ: 280 кг.
13. Из сосуда, содержащего чистый спирт, отлили 20% содержимого и добавили такое же количество воды. Затем снова отлили 20% содержимого и добавили такое же количество воды. Какое минимальное количество раз надо повторить этот процесс, чтобы содержание спирта в сосуде стало меньше 30%?
Ответ:6 раз.
14. Сплав весит 2
кг и состоит из серебра и меди, причем вес серебра составляет 14% веса меди. Сколько серебра в
данном сплаве?
Ответ:0,25 кг.
15. Имелись два разных сплава меди, причем процент содержания меди в первом сплаве был на 40% меньше, чем во втором. После того как их сплавили вместе, получили сплав, содержащий 36% меди. Определите процентное содержание меди в обоих сплавах, если известно, что в первом ее 6 кг, а во втором — вдвое больше.
Ответ:20% и 60%.
16. Два раствора, первый из которых содержал 800 г, а второй 600 г безводной серной кислоты, смешали и получили 10 кг нового раствора серной кислоты. Определите массу первого и второго растворов, вошедших в смесь, если известно, что процент содержания безводной серной кислоты в первом растворе на 10% больше, чем во втором.
Ответ:4кг и 6 кг.
17. Морская вода содержит 5% (по весу) соли. Сколько килограммов пресной воды надо прибавить к 40 кг морской воды, чтобы содержание соли в последней составляло 2 %?
Ответ: 60 кг.
18. Имеется стальной лом двух сортов с содержанием никеля 5% и 40%. Сколько нужно взять металла каждого из этих сортов, чтобы получить 140 т стали с содержанием 30% никеля?
Ответ:40т и 100т.
19. Свежие грибы по весу содержат 90% воды, а сухие 12% воды. Сколько получится сухих грибов из 22 кг свежих?
Ответ:2,5 кг
20. Имеется сплав серебра с медью. Вычислите вес и пробу этого сплава, если его сплав с 3 кг чистого серебра есть сплав 900-й пробы, а его сплав с 2 кг сплава 900-й пробы есть сплав 840 пробы. (Проба благородного металла, равная например, 760 означает, что масса этого благородного металла в сплаве составляет 0,760 от массы всего сплава.)
Ответ: Вес первоначального сплава 3кг его проба 0,8.
21. Имеются три слитка. Первый весит 5 кг, второй 3 кг и каждый из этих слитков содержит 30% меди. Если первый слиток сплавить с третьим, то получится слиток, содержащий 56% меди, а если второй слиток сплавить с третьим, то получится слиток, содержащий 60% меди. Найдите вес третьего слитка и процент содержания меди в нем.
Ответ:10кг; 69%
22. Один сплав меди с оловом содержит эти металлы в отношении 2:3, другой — в отношении 3 : 7. В каком количестве надо взять эти сплавы, чтобы получить 12 кг нового сплава, в котором медь и олово были бы в отношении 3:5?
Ответ: 9кг и 3кг.
23. 40% раствор серной кислоты разбавили 60% раствором, после чего добавили 5кг воды и получили раствор 20% концентрации. Если бы вместо 5кг воды добавили 5 кг 80% раствора серной кислоты, то получился бы 70% раствор. Сколько было 40% и 60% раствора серной кислоты?
Ответ: 1кг 40% и 2кг 60%.
© ООО «Знанио»
С вами с 2009 года.