Найдите квадрат расстояния между вершинами B и D1 прямоугольного параллелепипеда, для которого AB = 5,
AD = 7, AA1 = 6.
№1
Решение.
Диагональ прямоугольного параллелепипеда равна сумме квадратов трех его измерений:
BD12 = AB2 + BC2 + BB12
BD12 = AB2 + AD2 + AA12
BD12 = 52 + 72 + 62 =
= 25 + 49 + 36 = 110
Ответ: 110.
Найдите расстояние между вершинами A и D1 прямоугольного параллелепипеда, для которого AB = 4,
AD = 12, AA1 = 5.
№3
Решение.
Диагональ грани прямоугольного параллелепипеда равна сумме квадратов двух его измерений (по теореме Пифагора в п/у ADD1):
АD12 = AD2 + DD12
АD12 = AD2 + AA12
АD12 = 122 + 52 = 132
АD1 = 13
Ответ: 13.
Найдите угол AC1C прямоугольного параллелепипеда, для которого AB = 15, A1D1 = 8, AA1 = 17. Ответ дайте в градусах.
Решение.
Угол AC1C найдем из п/у AСС1, в котором известен катет СС1 = АА1 = 17, а катет АС найдем по теореме Пифагора в п/у AВС:
АС2 = AВ2 + ВС2
AC2 = 152 + 82 = 172
AC = 17. Значит AСС1 − р/б, AC1C = 45.
Ответ: 45.
С1
В1
А
С
В
D
А1
D1
15
8
17
№6
Ответ: 2.
В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 30. Найдите тангенс угла AD1D.
Решение.
Рассмотрим п/у AD1D,
в котором известен катет
DD1 = 30, а катет AD является большей диагональю в правильном шестиугольнике
и равен 60.
tgAD1D = AD : DD1 = 60 : 30 = 2
№7
Ответ: 60.
В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 20. Найдите угол СВЕ. Ответ дайте в градусах.
Решение.
Рассмотрим п/у СВЕ,
в котором известен катет
ВС = 20, а катет ВЕ является большей диагональю в правильном шестиугольнике
и равен 40.
cosСВЕ = ВС : ВЕ = 20 : 40 = 0,5
СВЕ = 60
© ООО «Знанио»
С вами с 2009 года.