МОУ средняя школа №12
Оценка 4.7

МОУ средняя школа №12

Оценка 4.7
doc
08.11.2020
МОУ средняя школа №12
Развитие математ. грамотности.doc

РАЗВИТИЕ МАТЕМАТИЧЕСКОЙ ГРАМОТНОСТИ ОБУЧАЮЩИХСЯ В УСЛОВИЯХ ИНКЛЮЗИВНОГО ОБРАЗОВАНИЯ

                                                                    


Основой высокого уровня математического образования на разных ступенях обучения является математическая грамотность подрастающего поколения. Поэтому обеспечение математической грамотности школьников является первоочередной задачей в деле обеспечения добротности школьного математического образования. А это является основой добротности математического образования в профессиональной школе.
Понятие математической грамотности начало формироваться в конце ХХ столетия в исследованиях Международной ассоциации по оценке учебных достижений учащихся ІЕА. В этих исследованиях под математической грамотностью понимали «готовность выпускников средней школы справляться с жизненными проблемами, для решения которых нужно использовать некоторые математические знания. Здесь под  математической грамотностью понимается «способность человека определять и понимать роль математики в мире, в котором он живет, высказывать хорошо обоснованные математические суждения и использовать математику так, чтобы удовлетворять в настоящем и будущем потребности, присущие созидательному, заинтересованному и мыслящему гражданину» .
Более детально содержание этого понятия экспертами  уточнено следующим образом.
Под математической грамотностью понимается способность учащихся:
•    распознавать проблемы, которые возникают в окружающей действительности и могут быть решены средствами математики;
•    формировать эти проблемы на языке математики;
•    решать эти проблемы, используя математические факты и методы;
•     анализировать и использовать математические методы решения;
•    интерпретировать полученные результаты с учетом поставленной проблемы;
•    формулировать и записывать результаты решения .

 

 

 Решение задач практического содержания способно привить интерес ученика к изучению математики. Такие задания изменяют организацию традиционного урока. Они базируются на знаниях и умениях, и требуют умения применять накопленные знания в практической деятельности. Монокулярный характер зрения осложняет формирование представлений об объеме, величине, расстоянии. Частично видящие дети, особенно в классах средней ступени, зачастую ещё путают соотношения мер длины, плохо интерпретируют полученные численные значения площади, объёма до тех пор, пока эти единицы измерения не соотнесены с конкретными, уже известными им, предметами. Например, длина стола равна 1 м, толщина грифеля для письма – 1 мм, площадь класса – 30 кв.м, расстояние, которое проходит человек медленным шагом за 15 мин, приблизительно составляет 1 км и т. д. В процессе обучения следует обеспечить максимальные условия для активного действия детей в реальной действительности, где в процессе практического упражнения они постоянно узнают пространственные признаки ориентировки на плоскости и в большом пространстве. Так, при решении задач на движение учащиеся моделируют ситуации, описанные в условии задачи, либо с помощью наглядности (машинок, лодок, и т. п.) на плоскости стола (или доски), либо посредством ролевого разыгрывания ситуации. Этот приём, используемый в массовых школах преимущественно в начальных классах, помогает тотально слепым детям лучше представить ситуацию и выработать алгоритм решения задачи.

При решении прикладных задач на вычисление линейных размеров, площадей, объёмов числовые данные условия задачи, а так же полученные результаты полезно соотносить с размерами уже известных детям объектов (предметов), т. к. при этом учащиеся получают возможность сравнивать величины зачастую недоступных для тактильного обследования предметов. Например, высота Эйфелевой башни сравнивается, допустим, с высотой школы и т. п.

Основной массе слабовидящих детей геометрия дается особенно трудно, поэтому на уроках необходимо проводить работу по профилактике стрессов. Хорошие результаты дает работа в парах, в группах, где ведомый, более “слабый”, ученик чувствует поддержку товарища. А более “сильный”, объясняя какой-то учебный материал и работая с моделью или чертежом, ещё раз для себя детализирует и систематизирует полученные знания, старается отыскать новые примеры среди предметов окружающей обстановки. Таким образом, качественное усвоение программного материала по математике слабовидящими учащимися может быть достигнуто за счет умелого использования различных методов и приёмов обучения. И среди них важная роль принадлежит индивидуально-наглядному обучению, так как оно способствует развитию наглядно-образного и словесно-логического мышления, формированию пространственных представлений о предметах и явлениях окружающей действительности, а это и является одним из ведущих условий подготовки незрячих детей к жизни и трудовой деятельности.

Решение практических задач средствами математики, как правило, содержит четыре основных этапа

1.Анализ условия задачи.

Задача формулиру­ется на описательном языке. От правильной постановки задачи, указания ресурсов, которыми мы располагаем, зависит успеш­ность ее решения. Этому нужно учиться каждому, так как пригодится специалисту любого профиля.

2.Построение математической модели задачи.
Перевод исходной задачи на математический язык: вводятся переменные, ищутся связи между ними и устанавливаются ограничения на них, которые записываются в виде уравнений, неравенств или их систем.

3. Решение математической модели задачи.

Изучается полученная модель. Если задача извест­ная, то она решается по соответствующему ей алго­ритму. Если задача никогда не решалась, то ищется необходимый алгоритм.

4.Интерпретация решения. Это перевод реше­ния задачи на исходный язык.

Рассмотрим несколько задач

Размеры кузовов самосвалов МАЗ-205 и ЗИЛ-130 соответственно

                   равны (м): 6,07×2,64×2,44 и 6,72×2,39×2,18

                   Какой из них более вместителен?

Решение.

a)             Составляем математическую модель: кузов самосвала представляет собой геометрическую фигуру – прямоугольный параллелепипед. Задача сводится к нахождению объёмов 2х параллелепипедов.

b)             Решаем математическую задачу: объём прямоугольного параллелепипеда вычисляется по формуле:

V=abc, где a, b и c – это размеры кузовов

Подставляем данные в формулу: VМ=6,07·2,64·2,44=39,1(м3)

VЗ=6,72·2,39·2,18=35,0(м3)

c)             Переводим математическое решение на язык исходной задачи:

Ответ: Более вместительным оказался кузов самосвала МАЗ-205.

 

 


РАЗВИТИЕ МАТЕМАТИЧЕСКОЙ ГРАМОТНОСТИ

РАЗВИТИЕ МАТЕМАТИЧЕСКОЙ ГРАМОТНОСТИ

При решении прикладных задач на вычисление линейных размеров, площадей, объёмов числовые данные условия задачи, а так же полученные результаты полезно соотносить с размерами уже известных…

При решении прикладных задач на вычисление линейных размеров, площадей, объёмов числовые данные условия задачи, а так же полученные результаты полезно соотносить с размерами уже известных…
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
08.11.2020