ПАРАЛЛЕЛОГРАММ И ТРАПЕЦИЯ
Цели: доказать признаки параллелограмма и рассмотреть решение задач.
Ход урока
I. Проверка домашнего задания.
1. Ответить на вопросы учащихся по домашнему заданию.
2. Выполнить задания (устно):
1) На рисунке а) 1 = 4, 2 = 3. является ли четырехугольник АВСD параллелограммом?
2) На рисунке б) 1 = 2 = 3. Докажите, что четырехугольник АВСD – параллелограмм.
3) На рисунке в) ММ || РQ, М = Р. Докажите, что МNPO – параллелограмм.
4) Является ли четырехугольник АВСD,
изображенный на рисунке г), параллелограммом, если а) 1 = 70°; 3 =
110°; 2 + 3 = 180°;
б) 1
= 2,
2
≠4?
а) б)
в) г)
3. Анализ самостоятельной работы.
II. Изучение нового материала.
1. Перед тем как приступить к изучению признаков параллелограмма, следует напомнить учащимся, что означает слово «признак» и что такое обратная теорема.
2. Предложить учащимся самим сформулировать теоремы, обратные утверждениям о свойствах параллелограмма.
3. Подчеркнуть, что некоторое утверждение верно, но отсюда еще не следует, что верно и обратное ему утверждение.
4. Доказательство признаков можно провести силами учащихся.
III. Закрепление изученного материала.
Решить задачи №№ 379, 382.
№ 379.
Решение
|
1) Так как ВK АС и DМ АС, то ВK || DМ. 2) Прямоугольные треугольники АВK и СDМ равны по острому углу и гипотенузе (ВАK = DСМ как внутренние накрест лежащие при АВ || СD и секущей АС, АВ = DС по свойству параллелограмма). |
3) Тогда ВK = DМ.
4) Четырехугольник ВМDK является
параллелограммом, так как
ВK || DМ, ВK = DМ.
№ 382.
Решение
|
1) По свойству параллелограмма АО = ОС, ВО = ОD. 2) По условию ВВ1 = В1О
= ОD1 = 3) Четырехугольник А1В1С1D1 – параллелограмм, так как его диагонали пересекаются и точкой пересечения делятся пополам. |
IV. Итоги урока.
Если в задаче необходимо доказать, что АВСD – параллелограмм, то применяют один из признаков:
АВ || СD и ВС || СD |
|
АВСD – параллелограмм |
АВ || СD и АВ = СD |
|
АВСD – параллелограмм |
АВ = СD и АD = ВС |
|
АВСD – параллелограмм |
АО = ОС и ВО = ОD |
|
АВСD – параллелограмм |
Домашнее задание: вопросы 6–9, с. 114; №№ 380, 373, 377, 384.
© ООО «Знанио»
С вами с 2009 года.