Встречное движение
Из двух городов одновременно навстречу друг другу отправляются два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 6 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 162 км, скорость первого велосипедиста равна 15 км/ч, скорость второго — 30 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.
№1
Пусть х км – расстояние, которое проехал второй велосипедист до встречи,
тогда (162-х)км проехал первый велосипедист до встречи.
Время второго велосипедиста до встречи - х:30 ч,
а первого –[(162-х):15+ 0,1]ч.
Составим уравнение х/30=(162-х)/15+0,1 и решим его.
6 мин = 6/60ч = 0,1ч
Ответ: 109 км.
Два объекта движение начинают из одного пункта и в одном направлении
Два велосипедиста одновременно отправляются в 60- километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найти скорость велосипедиста, пришедшего к финишу вторым.
№2
Решение:
Пусть х км/ч - скорость второго велосипедиста,
тогда (х+10)км/ч – скорость первого велосипедиста.
60/х ч – время, которое затратил второй велосипедист на пробег,
60/(х+10) – время первого велосипедиста.
Составим уравнение 60/х – 60/(х+10) = 3 и решим его.
Умножим обе части уравнения на х(х+10)‡0.
После преобразований имеем уравнение х² +10х -200 = 0.
Корни уравнения 10 и -20(не подходит по условию).
Ответ: 10 км/ч.
Задачи на «скорость сближения» и «скорость удаления»
При решении задач на встречное движение и движение в противоположных направлениях «скорость сближения» и «скорость удаления» находятся сложением скоростей движущихся объектов.
При решении задач на движение в одном направлении «скорость сближения» и «скорость удаления» находятся вычитанием скоростей движущихся объектов.
№3
Поезд, двигаясь равномерно со скоростью 54 км/ч, проезжает мимо идущего параллельно путям со скоростью 6 км/ч навстречу ему пешехода за 30 секунд. Найдите длину поезда в метрах.
Решение:
1. 54+6 =60(км/ч) – скорость сближения
2. 60 км/ч = 60·1000:60 м/мин= 1000м/мин
3. 30 сек = 0,5 мин
4. 1000·0,5 = 500 (м) длина поезда.
Ответ: 500 м.
№4
Поезд, двигаясь равномерно со скоростью 65 км/ч, проезжает мимо идущего в том же направлении параллельно путям со скоростью 5 км/ч пешехода за 30 секунд. Найдите длину поезда в метрах.
Решите самостоятельно
Ответ: 500 м.
№5
По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 70 км/ч и 30 км/ч. Длина товарного поезда равна 1400 метрам. Найдите длину пассажирского поезда, если время, за которое он прошёл мимо товарного поезда, равно 3 минутам.
Ответ: 600 м.
Решение:
1. 70-30=40(км/ч) – скорость сближения поездов.
2. 40 км/ч = 40 ·1000:60 м/мин = 2000/3 м/мин.
3·2000/3= 2000(м) – проедет пассажирский поезд за 3 минуты,
это расстояние равно сумме длин поездов.
4. 2000 – 1400 = 600(м) – длина пассажирского поезда.
Средняя скорость
№6
Первую половину трассы автомобиль проехал со скоростью 56 км/ч, а вторую — со скоростью 84 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
Решение:
Обозначим длину трассы за 2S, S – половина трассы,
t₁ = S/56(ч)- время, затраченное автомобилем на
первую половину трассы,
а t₂ = S/84(ч) - на вторую половину трассы.
υср = 2S/(t₁ + t₂)
υср = 2s/(S/56 + S/84) = 67,2(КМ/Ч)
Ответ: 67,2 КМ/Ч
№7
Первые 2 часа автомобиль ехал со скоростью 55 км/ч, следующий час — со скоростью 70 км/ч, а последние 3 часа — со скоростью 90 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
Решите самостоятельно
Ответ: 75 км/ч.
Движение по воде
№8
Моторная лодка прошла против течения реки 77 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения равна 4 км/ч.
Решение:
Пусть х км/ч - собственная скорость лодки(в неподвижной воде), тогда
(х+4)км/ч – скорость лодки по течению реки,
(х-4)км/ч – скорость лодки против течения реки.
77/(х-4)ч – время лодки против течения реки,
77/(х-4)ч – время по течению реки, на 2ч меньше
Ответ: 18 КМ/Ч
Составим уравнение 77/(х-4) – 77(х+4) = 2 и решим его.
Задачи для самостоятельного решения
1) Теплоход проходит по течению реки до пункта назначения 165 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 4 км/ч, стоянка длится 5 часов, а в пункт отправления теплоход возвращается через 18 часов после отплытия из него.
2) Первые 100 км автомобиль ехал со скоростью 50 км/ч, следующие 240 км — со скоростью 60 км/ч, а последние 200 км — со скоростью 100 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
3) Расстояние между пристанями A и B равно 60 км. Из A в B по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт B, тотчас повернула обратно и возвратилась в A. К этому времени плот прошёл 36 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4 км/ч.
4) Первую половину пути автомобиль проехал со скоростью 69 км/ч,
а вторую — со скоростью 111 км/ч.
Найдите среднюю скорость автомобиля на протяжении всего пути.
5) Поезд, двигаясь равномерно со скоростью 141 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям со скоростью 6 км/ч, за 12 секунд. Найдите длину поезда в метрах.
© ООО «Знанио»
С вами с 2009 года.