Цели урока:
Ø Развивающие:
развивать:
- способности к самостоятельному планированию и организации работы
- навыки коррекции собственной деятельности через применение информационных технологий;
- умение обобщать, абстрагировать и конкретизировать знания при исследовании функции.
Ø Воспитательные:
воспитывать:
- познавательный интерес к математике;
- информационную культуру и культуру общения;
- самостоятельность, способность к коллективной работе.
Оборудование: компьютерный класс, мультимедиапроектор, компьютерная презентация по теме, индивидуальные задания на компьютере, ОЭР.
Тип урока: урок комплексного применения ЗУН учащихся.
Методы: проблемно-поисковый, индуктивный, метод групповой работы, самостоятельной работы.
Мобилизация учебной деятельности учащихся: доброжелательный настрой учителя и учащихся, быстрое включение класса в деловой ритм, организация внимания всех учащихся, полная готовность класса и оборудования к работе. повторение правил техники безопасности работы на компьютере.
№2 (слайд 23)
По графику производной некоторой функции укажите интервалы, на которых функция монотонно возрастает, убывает, имеет максимум, имеет минимум, имеет перегиб (график на слайде).
№3 (слайд 24)
На рисунке изображён график производной функции y=f(x). Сколько точек максимума имеет эта функция?
|
|
Ответы (слайд 25)
![]() |
у = x3 – 3x2 + x + 5 у = (x2 – 1)2
Практическая
работа с применением электронного учебного пособия «Математика – практикум 5-11» и по индивидуальным заданиям
на местах.
За компьютер сначала рассаживаются 7 учащихся, остальные за парты.
По мере выполнения заданий ребята меняются местами.
Задания учащимся отличаются по объёму, по их сложности, по их содержанию. Имеют 4 уровня сложности: средний, выше среднего, высокий, творческий. Учащиеся, слабо владеющие алгоритмом исследования функции, приглашаются за компьютер и начинают работать с программой «Исследование функций с помощью производной», где они выполняют задание по образцу - алгоритму, предлагаемому компьютером, аналогичное тому с которым не справились при выполнении самостоятельной работы, проводимой на прошлом уроке, или допустили ошибки. Выполнив работу над ошибками, тем самым, повторив алгоритм исследования функции, получают карточку с новым заданием, которое уже выполняется самостоятельно и проверяется с помощью программы на компьютере. Цель этих заданий отработка практических навыков в построении графиков.
Часть учащихся, хорошо усвоивших данный материал, получив карточки с индивидуальным заданием, отрабатывают практический навык, используя самоконтроль, с применением программы, где проверяется только конечный результат - построение графика, выполняя задания 1-3 уровня сложности. В случае затруднения при исследовании функции ученик может сесть за компьютер, где в режиме «Самостоятельная» программы «Исследование функций с помощью производной» выполнит своё задание.
Учащиеся, выполнившие задания 1 - 3-го уровня продолжают работу, получив задание более сложного уровня, творческого характера, где необходимо применить самостоятельность, логическое и образное мышление в новых условиях.
Все работы оцениваются. Работы, выполненные только с применением программы «Исследование функций с помощью производной», оцениваются отметкой «3»,задания сложности 1-го уровня отметкой «4», творческие задания и задания 2 - 3-го уровней отметкой «5».
1. Какова область определения функции? |
||||
2. Найдите область определения функции. |
||||
3. Найдите множество значений
функции, является ли функция ограниченной? |
||||
4. Найдите область значений функции. у = 10 - 2x2
|
||||
5. В каких точках график
функции пересекает ось абсцисс? у = x2 + 1 |
||||
6. Является ли данная функция чётной или нечётной? |
||||
7.Может ли функция обращаться в нуль?
|
||||
11.Исследовать функцию на выпуклость вогнутость.
|
||||
12.Имеет ли функция точку перегиба на отрезке [1;2]? y=- x4 + 4x3 - 4x2 + 4
|
||||
14.Определите, при каком значении параметра b максимум функции равен 3.
|
|
|||
15. Производная функции y=f(x) равна (x+1)(x-2). Точками минимума функции являются точки…
б) x= 2 г) x= 1, x=2 |
|
Практическая работа
На данном этапе урока при проведении мини - исследовательской работы применяются методы контроля и самоконтроля, а также самоуправления учебными действиями. Обучение на немногочисленных, но хорошо подобранных задачах решаемых школьниками в основном самостоятельно, способствует вовлечению их в творческую исследовательскую работу, последовательно проводя через этапы научного поиска.
По
6 карточек к каждому из вариантов
1,2 вариант – задания среднего уровня
3, 4 вариант – задания уровня выше среднего
5, 6 вариант - задания высокого уровня
Задание:
исследовать и построить график функции
Творческое задание
1. Указание: отыщите функцию в таблице, исходя из её «автобиографии». Найдите область определения, корень, точку разрыва, промежуток возрастания и убывания.
Я – функция сложная, это известно,
Ещё расскажу, если вам интересно,
Что точку разрыва и корень имею,
И есть интервал, где расти не посмею.
Во всём остальном положительна, право,
И это, конечно, не ради забавы.
Для чисел больших я стремлюсь к единице.
Найдите меня среди прочих в таблице.
2. Определите, при каком значении параметра b максимум функции равен 3?
Подвести итоги усвоения материала по уровням понимания учащимися, выделив учащихся со структурным пониманием, т.е. тех, кто работал по алгоритму; тех, кто решал по образцу; и тех, кто может применить свои знания в новых условиях. Выставляется отметка каждому ученику за блиц - опрос, и за практическую работу. Сообщается учащимся, кому и на какие вопросы необходимо обратить внимание.
Задание на дом: закончить и оформить работу
Скачано с www.znanio.ru
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.