Урок 7. СМЕЖНЫЕ И ВЕРТИКАЛЬНЫЕ УГЛЫ
Оценка 4.6

Урок 7. СМЕЖНЫЕ И ВЕРТИКАЛЬНЫЕ УГЛЫ

Оценка 4.6
docx
31.08.2020
Урок 7. СМЕЖНЫЕ И ВЕРТИКАЛЬНЫЕ УГЛЫ
ввести понятия смежных и вертикальных углов; рассмотреть их свойства; и показать, как применяются эти понятия при решении задач.
7.docx

Урок 7
Смежные и вертикальные углы

Цели: ввести понятия смежных и вертикальных углов; рассмотреть их свойства; и показать, как применяются эти понятия при решении задач.

Наглядные пособия: таблицы «Смежные углы», «Вертикальные углы».

Ход урока

I. Анализ результатов самостоятельной работы.

II. Изучение нового материала. Решение задач.

1. Ввести понятие смежных углов и их свойства (сумма смежных углов равна 180°) с помощью таблицы «Смежные углы».

2. Выполнение практического  задания  № 55  (на  доске  и  в  тетрадях).

3. Устно решить задачи №№ 58, 59, 60, 63, 62 (по рис. 46).

4. Письменно решить задачу № 61 (в; г):

в) 

Дано: hk и kl – смежные;

hk больше kl на 47°18′.

Найти: hk и kl.

Решение

Пусть kl = х, тогда hk = х + 47°18′.

По свойству о сумме смежных углов kl + hk =180°.

х + х + 47°18′ = 180°;       2х = 180° – 47°18′;

2х = 179°60′ – 47°18′;       2х = 132°42′;       х = 66°21′.

kl = 66°21′;   hk = 66°21′ + 47°18′ = 113°39′.

Ответ: 113°39′ и 66°21′.

г) Пусть kl = х, тогда hk = 3х.

х + 3х = 180°;  4х = 180°;  х = 45°;  kl = 45°;  hk = 135°.

Ответ: 135° и 45°.

5. Понятие вертикальных углов можно ввести, выполняя следующее задание:

1) Начертите неразвернутый АОВ и назовите лучи, являющиеся сторонами этого угла.

2) Проведите луч ОС, являющийся продолжением луча ОА, и луч ОD, являющийся продолжением луча ОВ.

3) Запишите в тетради: углы АОВ и СОD называются вертикальными.

6. На таблице «Вертикальные углы» показать, что при пересечении двух прямых образуются две пары вертикальных углов с вершиной в точке пересечения этих прямых.

7. Определение вертикальных углов (рис. 41).

8. Обоснование того факта, что вертикальные углы равны, вначале можно провести на конкретном примере, записав его на доске и в тетрадях учащихся.

Задача.  Прямые АВ и СD пересекаются в точке О так, что АОD =
=
35°. Найдите углы АОС и ВОС.

Решение

1) Углы АОD и АОС смежные, поэтому ВОС = 180° – 35° = 145°.

2) Углы АОС и ВОС также смежные, поэтому  ВОС = 180° – 145° =
= 35°.

Значит, ВОС = АОD = 35°, причем эти углы являются вертикальными.

Вопрос: верно  ли  утверждение,  что  любые  вертикальные  углы равны?

9. Самостоятельное доказательство учащимися свойства вертикальных углов (рис. 41) и запись этого доказательства в тетрадях.

10. Устно решить задачу № 65 (использовать таблицу «Вертикальные углы»).

11. Устно решить задачу № 67 по рисунку 47.

12. Учащиеся самостоятельно, используя свойства вертикальных и смежных углов, должны обосновать тот факт, что если при пересечении двух прямых один из образовавшихся углов прямой, то остальные углы также прямые.

13. Выполнение практического задания № 57.

14. Беседа о построении прямых углов на местности (п. 13) с демонстрацией изготовленного учащимися экера.

III. Самостоятельная работа.

Вариант I

1. Один из смежных углов на 27° меньше другого. Найдите оба смежных угла.

2. Найдите все неразвернутые углы, образованные при пересечении двух прямых, если сумма двух из них равна 226°.

Вариант II

1. Один из смежных углов в девять раз больше другого. Найдите оба смежных угла.

2. Найдите все неразвернутые углы, образованные при пересечении двух прямых, если один из них на 81° больше другого.

IV. Итоги урока.

Домашнее задание: изучить пункты 11–13 из § 6; ответить на вопросы 17–21 на с. 26; выполнить практическое задание № 56; решить задачи №№ 61, 64, 65б.


 

Урок 7 Смежные и вертикальные углы

Урок 7 Смежные и вертикальные углы

На таблице «Вертикальные углы» показать, что при пересечении двух прямых образуются две пары вертикальных углов с вершиной в точке пересечения этих прямых

На таблице «Вертикальные углы» показать, что при пересечении двух прямых образуются две пары вертикальных углов с вершиной в точке пересечения этих прямых

Вариант II 1. Один из смежных углов в девять раз больше другого

Вариант II 1. Один из смежных углов в девять раз больше другого
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
31.08.2020