Введение
Использование электромагнетизма играет ведущую роль во многих отраслях науки и техники.
С электромагнетизмом связывают развитие энергетики, транспорта, вычислительной техники, физики плазмы, термоядерного синтеза и т.д. Магнитные разведка, дефектоскопия, магнитные линзы и магнитная запись информации, магнитная обработка воды, поезда на магнитной подушке – вот далеко не полный перечень перспективных областей промышленного применения магнитного поля. Неотъемлемой частью компьютерного томографа, без которого невозможна современная медицинская диагностика, является также источник магнитного поля.
Майкл Фарадей
Английский физик, член Лондонского королевского общества.
Исследования в области электричества, магнетизма, магнитооптики, электрохимии.
В 1821г. Фарадей впервые осуществил вращение магнита вокруг проводника с током и проводника с током вокруг магнита.
Магнитная левитация.
Эффект магнитной левитации заключается в удерживании физического объекта в определённой точке пространства при помощи магнитного поля компенсирующего силу тяжести действующую на объект.
Поезда на магнитной подушке.
В бурном процессе эксплуатации,
Магнитного поля и левитации,
Движется плавно, без шума, без трения,
Результат достижения нашего поколения.
Недавно все думали, что нереально,
А это всё просто и гениально.
Быстрый, надёжный, удобный, простой,
Поезд не едет - летит над землёй.
Магнитоплан
Магнитоплан или Маглев (от англ. magnetic levitation)-это поезд на магнитной подвеске, движимый и управляемый магнитными силами. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса. Так как между поездом и поверхностью движения существует зазор, трение исключается, и единственной тормозящей силой является сила аэродинамического сопротивления.
Как устроен такой поезд?
Поезд-вагон как бы сидит верхом на эстакаде, охватывая ее с боков. На ней с обеих сторон снизу тянутся горизонтальные стальные пластины - "феррорельсы". На дне вагона как раз под ними расположены мощные несущие электромагниты. Как только в них подается ток, возникают силы притяжения, и состав зависает над эстакадой.
Такая подвеска по своей сути неустойчива. Если почему-либо ток в несущих электромагнитах уменьшится, то ослабнут силы притяжения и состав может опуститься на эстакаду. Наоборот, при возможном увеличении тока силы притяжения возрастут, что тоже может привести к остановке движения.
Технология
На данный момент существует 3 основных технологии магнитного подвеса поездов:
На сверхпроводящих магнитах(электродинамическая подвеска, EDS)
На электромагнитах (электромагнитная подвеска, EMS)
На постоянных магнитах; это новая и потенциально самая экономичная система.
Состав левитирует за счёт отталкивания одинаковых полюсов магнитов и, наоборот, притягивания разных полюсов. Движение осуществляется линейным двигателем, расположенным либо на поезде, либо на пути, либо и там, и там.
Серьёзной проблемой проектирования является большой вес достаточно мощных магнитов, поскольку требуется сильное магнитное поле для поддержания в воздухе массивного состава.
По теореме Ирншоу, статичные поля, создаваемые одними только электромагнитами и постоянными магнитами, нестабильны, в отличие от полей диамагнетиков и сверхпроводящих магнитов.
Существуют системы стабилизации: датчики постоянно замеряют расстояние от поезда до пути и соответственно ему меняется напряжение на электромагнитах. Наиболее активные разработки маглев ведут Германия и Япония
Заключение
Таким образом, поезд на магнитной подушке, несмотря на своё короткое существование, уже является неотъемлемой частью нашего мира.
Ему характерны такие качества как высокая скорость, экологичность, безопасность, надежность и много других качеств, отличающих его от тепловых и электропоездов. К сожалению, в России и странах СНГ пока нет поездов на магнитной подушке.
© ООО «Знанио»
С вами с 2009 года.