Тема: Корни и степени. Корни натуральной степени из числа их свойства.
Цель урока: повторить и систематизировать знания учащихся о квадратном корне; сформировать у учащихся понятие корня степени n.Формировать умение учащихся работать с корнями четной и нечетной степеней.
Степени
Определим понятие степени, показатель которой — натуральное число (т.е. целое и положительное).
1. По определению: .
2. Возвести число в квадрат — значит умножить его само на себя:
3. Возвести число в куб — значит умножить его само на себя три раза: .
Возвести число в натуральную степень — значит умножить число само на себя раз:
Степень с целым показателем {0, ±1, ±2,...}
Если показателем степени является целое положительное число:
, n > 0
Возведение в нулевую степень:
, a ≠ 0
Если показателем степени является целое отрицательное число:
, a ≠ 0
Примечание: выражение не определено, в случае n ≤ 0. Если n > 0, то
Пример 1.
Степень с рациональным показателем
Если:
§ a > 0;
§ n — натуральное число;
§ m — целое число;
Тогда:
Пример 2.
Свойства степеней
Произведение степеней |
|
Деление степеней |
|
Возведение степени в степень |
|
Пример 3.
Примеры для решения у доски:
Корни
С понятием квадратного корня из числа а вы уже знакомы: это такое число, квадрат которого равен а.
,
,
,
Аналогично определяется корень -й степени из числа а, где– произвольное натуральное число.
А теперь давайте решим такое уравнение:
Итак, это уравнение мы можем переписать в таком виде: . Или .
Тогда наше уравнение равносильно совокупности уравнений: .
Понятно, что уравнение не имеет решения на множестве действительных чисел. Значит, остаётся решить уравнение
Итак, наше уравнение имеет два действительных корня 5 и –5. Их называют корнями четвёртой степени из числа 625. В свою очередь, положительный корень (число 5) называют арифметическим корнем четвёртой степени из числа 625. Обозначают его так: . Таким образом, .
Запомните!
Арифметическим корнем натуральной степени из неотрицательного числа а называется неотрицательное число, -я степень которого равна а.
Арифметический корень -ой степени из числа а обозначают так: . Символ называют знаком арифметического квадратного корня или радикалом (от латинского слова «радикс» – корень), число называется показателем корня, а число а, стоящее под знаком корня, – подкоренным выражением.
Вам хорошо известен такой частный случай арифметического корня -й степени, как корень второй степени, или квадратный корень из числа, то есть когда
В этом случае показатель корня не пишут, а пишут просто.
Ещё одним частным случаем является мы привыкли называть его корнем кубическим.
Как правило, когда ясно, что речь идёт об арифметическом корне -й степени, слово «арифметический» не произносят, а говорят кратко: «корень энной степени».
Действие, посредством которого отыскивается корень -й степени, называется извлечением корня -й степени. Это действие является обратным действию возведения в -й степень.
Равенство при верно, когда выполняются два условия:; второе —.
Например,.
Число;
.
Видим, что оба условия выполняются. Значит верно.
Из определения арифметического корня следует, что если, то.
Например,
А теперь давайте решим следующие уравнения: и . Итак, первое уравнение
Перепишем это уравнение в виде: .
Преобразуем наше уравнение, применяя формулу разности кубов. Имеем:
Перейдём к уравнению 2:
Перепишем это уравнение в виде: .
Преобразуем наше уравнение, применяя формулу разности кубов. Имеем:.
Так как , то число –4 является корнем из числа –64. Однако это число не является арифметическим корнем по определению. Число называют корнем кубическим из числа и обозначают так:
Вообще, для любого нечётного натурального числа, уравнение, при имеет только один корень, причём отрицательный. Этот корень обозначается, как и арифметический корень, символом.
И называют его корнем нечётной степени из отрицательного числа.
Запомните! При нечётном существует, и притом только один. Для корней нечётной степени справедливо равенство
Например,
Корень нечётной степени из отрицательного числа а связан с арифметическим корнем из числа следующим равенством:
Например,
Арифметический корень -й степени обладает несколькими свойствами. Перечислим их. Итак, при условии, что, , а, и – натуральные числа, причём, , справедливы равенства:
1. Корень n-степени (n=2,3,4,5, …) из произведения неотрицательных чисел равен произведению корней n-степени из этих чисел:
.
2. Чтобы извлечь корень из дроби, нужно извлечь корень из числителя и знаменателя отдельно и первый результат разделить на второй
.
3. Если a≥0, n=2,3,4,5,… и m – любое натуральное число, то справедливо равенство:
.
4. Если a≥0, n и k - натуральные числа, большие 1, то справедливо равенство: .
5. Если показатели корня и подкоренного выражения умножить или разделить на одно и то же отличное от нуля число, то значение корня не изменится: .
Обратите внимание, что в первом свойстве число может также быть равным ; в третьем свойстве число может быть любым целым, если .
Докажем справедливость этих свойств. Итак, первое свойство.
1. .
По определению арифметического корня – это такое неотрицательное число, -я степень которого равна произведению .
;
.
2. .
;
3. .
;
.
4. .
;
.
5. .
;
.
А теперь давайте приступим к практической части нашего урока.
Задание 1.
Найдите значения выражений а) ; б) ; в) .
Решение.
а) ; б) ; в) .
; ;
; ;
Задание 2.
Преобразуйте выражения: а) ; б) ; в) ; г) .
Решение.
а) ;
б) ;
в) ;
г) .
Примеры для самостоятельного решения:
© ООО «Знанио»
С вами с 2009 года.