Контрольные и самостоятельные работы по математике 8 класс.
Оценка 5
Контроль знаний
doc
математика
8 кл
29.03.2018
Математический диктант по теме: «Квадратный корень из произведения и дроби». 8 класс
Контрольная работа № 3 по теме: «Свойства арифметического квадратного корня».
Самостоятельная работа по теме: «Применение свойств арифметического квадратного корня».
Проверочная работа по алгебре
Самостоятельная работа по теме: «Определение квадратного уравнения. Неполные квадратные уравнения»
Самостоятельная работа по теме: «Решение квадратных уравнений выделением квадрата двучлена».
Самостоятельная работа по теме: «Решение квадратных уравнений по формуле».
Самостоятельная работа по теме: «Решение задач с помощью квадратных уравнений».
Контрольная работа № 5 по теме: «Квадратные уравнения».
Самостоятельная работа по теме: «Дробные рациональные уравнения».
Контрольная работа № 6 по теме: «Дробные рациональные уравнения».
Контрольная работа № 8 по теме: «Решение неравенств и систем неравенств с одной переменной».
контрольные и самостоятельные.doc
Математический диктант по теме: «Квадратный корень из произведения и
дроби». 8 класс.
Вариант 1.
1. Найдите значение выражения: а) √25 ∙ 81; б) √16 ∙ 900; в) √0,36 ∙ 1,21.
2. Вычислите: а) √36/169; б) √9/100; в) √1.
3. Найдите значение выражения: а) √3 ∙ √48; б) √1/11 ∙ √11/13 ∙ √13/25;
в) √99/√11.
4. Вычислите: √112 + 602; б) √852 – 842; в) √2,52 – 2,42.
Вариант 2.
1. Найдите значение выражения: а) √49 ∙ 36; б)√400 ∙ 9; в) √0,25 ∙ 1,44.
2. Вычислите: а) √81/100; б) √64/121; в) √2.
3. Найдите значение выражения: а) √5 ∙ √45; б) √1/7 ∙ √7/11 ∙ √11/36;
в) √3/√48.
4. Вычислите: а) √82 + 152; б) √612 – 602; в) √1,32 – 1,22. Контрольная работа № 3 по теме: «Свойства арифметического
квадратного корня».
Вариант 1.
г) √34 ∙ 26.
1. Вычислите: а) 0,5√0,04 + √144; б) 2√1 1; в) (2√0,5)2.
2. Найдите значение выражения: а) √0,25 ∙ 64; б) √56 ∙ √14; в) √8/√2;
3. Решите уравнение: а) х2 = 0,49; б) х2 = 10.
4. Упростите выражение: а) х2∙√9х2, где х ≥ 0; б) 5b2√, где b < 0.
5. Укажите две последовательные десятичные дроби с одним знаком после
запятой, между которыми заключено число √17.
6. Имеет ли корни уравнение √х + 1 = 0?
Вариант 2.
г) √24 ∙ 52.
1. Вычислите: а) √196 + 1,5√0,36; б) 1,5 – 7√; в) (2√1,5)2.
2. Найдите значение выражения: а) √0,36 ∙ 25; б) √8 ∙ √18; в) √27/√3;
3. Решите уравнение: а) х2 = 0,64; б) х2 = 17.
4. Упростите выражение: а) у3√4у2, где у ≥ 0; б) 7а√, где а < 0.
5. Укажите две последовательные десятичные дроби с одним знаком после
запятой, между которыми заключено число √38.
6. Имеет ли корни уравнение √х – 2 = 1?
Самостоятельная работа по теме: «Применение свойств арифметического
квадратного корня». 8 класс.
Вариант 1.
1. Вынесите множитель изпод знака корня: а) √49 ∙ 5; б) √45; в) √5х2, если
х ≥ 0; г) √8у2, если у < 0; д) √81у7.
2. Внесите множитель под знак корня: а) 3√2; б) 2√5; в) х√5; г) у√7;
д) х√3/х.
Вариант 2.
1. Вынесите множитель изпод знака корня: а) √36 ∙ 7; б) √75; в) √3у2, если
у < 0; г) √27х5; д) √12b2, если b ≥ 0. 2. Внесите множитель под знак корня: а) 2√3; б) 3√8; в) а√3; г) у√6;
д) х√5/х.
Проверочная работа по алгебре 8 класс.
Вариант 1.
1. Вычислите: (3√2 – 2)(4√2 + 7) 13√2.
2. Решите уравнение: х2 + 11х = 0.
3. Сократите дробь: 3 √b 2 + 2х√с + с
; б) .
b 9 x + √c
4. Постройте график функции у = 6/х. при каких значения х функция
принимает положительные (отрицательные) значения.
5. Упростите выражение: х2 + 3х 3 х2 + 9 3
: +
(х – 3)2 х + 3 х2 – 9 3 – х
Вариант 2.
1. Вычислите: (2√3 – 1)(3√3 + 5) 7√3.
2. Решите уравнение: 2х2 – 24 = 0.
3. Сократите дробь: 2 √а 4у2 + 4у√а + а
а) ; б) .
а 4 2у + √а
4. Постройте график функции: у = 6/х. При каких значениях
функция принимает отрицательные (положительные) значения.
5. Упростите выражение: с с с2 – 4 (2 – с)2
с – 2 с + 2 4 – с2 2с + с2
Самостоятельная работа по теме: «Определение квадратного уравнения. Неполные
квадратные уравнения».
Вариант 1. Вариант 2.
1. Укажите в данных квадратных уравнениях коэффициенты a,
а) х2 + х – 3 = 0; а) 2х2 + 3х – 5 = 0;
б) 3х2 = 2; б) 11х2 = 0;
в) √5х2 = 0; в) √7х2 – 4 = 0;
г) 7х + х2 = 0. г) –х2 = 5х.
2. Найдите корни уравнений:
а) 2х2 – 18 = 0; а) 3х2 – 12 = 0;
b,
c: б) х2 + 16 = 0; б) х2 + 9 = 0;
в) 0,64 – у2 = 0; в) 0,81 – у2 = 0;
г) х2 = 7; г) х2 = 5;
д) 0,6х2 = 0; д) 0,3х2 = 0;
е) 4у2 + 3у = 0; е) 8у2 – 5у = 0;
ж) 12 + 4х2 = 0; ж) 6х2 + 24 = 0;
з) (х + 2)(х – 1) = 0; з) у(у + 8) = 0;
и) у(у – 5) = 0. и) (х + 1)(х – 2) = 0.
Самостоятельная работа по теме: «Решение квадратных уравнений выделением квадрата
двучлена».
Вариант 1.
1.Решите уравнение: а) х2 – 4х + 3 = 0; б) 5х2 + 3х – 8 = 0
Вариант 2.
1. Решите уравнение: а) х2 + 9х + 14 = 0; б) 2х2 + 3х + 1 = 0
Самостоятельная работа по теме: «Решение квадратных уравнений выделением квадрата
двучлена».
Вариант 3.
1. Решите уравнение: а) 2х2 + х + 2 = 0; б) х2 + 3х – 10 = 0.
Вариант 4.
1. Решите уравнение: а) х2 – 2х – 1 = 0; б) 2х2 – 5х – 3 = 0.
Самостоятельная работа по теме: «Решение квадратных уравнений по формуле».
8 класс.
Вариант 1.
1.Сколько корней имеет уравнение? Найдите дискриминант:
а) 3х2 – 7х = 0; б) х2 + 3х + 3 = 0; в) 2х2 – 1 = 0; г) х2 – 2х + 1.
2. Решите уравнение: а) х2 – 4х + 3 = 0; б) 5х2 +14х – 3 = 0; в) х2 – 2х + 2 = 0;
г) 7х2 + 8х + 1 = 0; д) 3х2 – х + 2 = 0; е) 4х2 – 4х + 1 = 0.
Вариант 2.
1. Сколько корней имеет уравнение? Найдите дискриминант:
а) 6х2 – 5х = 0; б) х2 – 4х + 4 = 0; в) 3х2 – 4 = 0; г) х2 – 4х + 5 = 0. 2. Решите уравнение: а) х2 + 5х + 6 = 0; б) 5х2 + 8х – 4 = 0; в) х2 – 6х + 11 = 0; г) 7х2 +
6х – 1 = 0; д) 3х2 – 4х + 2 = 0; е) 9х2 – 6х + 1 = 0.
Самостоятельная работа по теме: «Решение задач с помощью квадратных
уравнений». 8 кл.
Вариант 1.
1. Произведение двух натуральных чисел равно 273. Найдите эти числа, если одно из
них на 8 больше другого.
2. Длина прямоугольника больше его ширины на 6 см. Найдите стороны
прямоугольника, если площадь его равна 112 см2.
Вариант 2.
1. Одно из двух натуральных чисел на 7 меньше другого. Найдите эти числа, если их
произведение равно 330.
2. Ширина прямоугольника меньше его длины на 4 см. Найдите стороны
прямоугольника, если его площадь равна 221 см2.
Самостоятельная работа по теме: «Решение задач с помощью квадратных
уравнений». 8 кл.
Вариант 1.
3. Произведение двух натуральных чисел равно 273. Найдите эти числа, если одно из
них на 8 больше другого.
4. Длина прямоугольника больше его ширины на 6 см. Найдите стороны
прямоугольника, если площадь его равна 112 см2.
Вариант 2.
3. Одно из двух натуральных чисел на 7 меньше другого. Найдите эти числа, если их
произведение равно 330.
4. Ширина прямоугольника меньше его длины на 4 см. Найдите стороны
прямоугольника, если его площадь равна 221 см2. Самостоятельная работа по теме: «Решение задач с помощью квадратных
уравнений». 8 кл.
Вариант 1.
5. Произведение двух натуральных чисел равно 273. Найдите эти числа, если одно из
них на 8 больше другого.
6. Длина прямоугольника больше его ширины на 6 см. Найдите стороны
прямоугольника, если площадь его равна 112 см2.
Вариант 2.
5. Одно из двух натуральных чисел на 7 меньше другого. Найдите эти числа, если их
произведение равно 330.
6. Ширина прямоугольника меньше его длины на 4 см. Найдите стороны
прямоугольника, если его площадь равна 221 см2.
Контрольная работа № 5 по теме: «Квадратные уравнения». 8 класс.
Вариант 1.
1. Решите уравнение: а) 2х2 + 7х – 9 = 0; б) 3х2 = 18х; в) 100х2 – 16 = 0;
г) х2 – 16х + 63.
2. Периметр прямоугольника равен 20 см. Найдите его стороны, если
известно, что площадь прямоугольника равна 24 см2.
3. В уравнении х2 + pх – 18 = 0 один из корней равен 9. Найдите другой
корень и коэффициент p.
4. Решите уравнение и выполните проверку по теореме, обратной теореме
Виета: х2 + 3х – 18 = 0.
5. Составьте квадратное уравнение, корни которого равны: 5 и 8.
Вариант 2.
г) х2 – 2х – 35 = 0.
1. Решите уравнение: а) 3х2 + 13х – 10 = 0; б) 2х2 – 3х = 0; в) 16х2 = 49;
2. Периметр прямоугольника равен 30 см. Найдите его стороны, если
известно, что площадь прямоугольника равна 56 см2.
3. Один из корней уравнения х2 + 11х + q = 0 равен – 7. Найдите другой
корень и свободный член q.
4. Решите уравнение и выполните проверку по теореме, обратной
теореме Виета: х2 – 2х – 24 = 0.
5. Составьте квадратное уравнение, корни которого равны: 9 и 4. Самостоятельная работа по теме: «Дробные рациональные уравнения». 8 класс.
Вариант 1.
1. Катер прошел 40 км/ч по течению реки и 6 км против течения, затратив на весь путь
3 ч. Какова собственная скорость катера, если скорость течения 2 км/ч?
2. Две машинистки, работая совместно, могут перепечатать рукопись за 8 ч. Сколько
времени потребовалось бы каждой машинистке на выполнение этой работы, если
одной для этого потребуется на 12 ч больше, чем другой?
Вариант 2.
1. Теплоход, собственная скорость которого 18 км/ч, прошел 50 км по течению реки и
8 км против течения, затратив на весь путь 3 ч. Какова скорость реки?
2. Два комбайна убрали поле за 4 дня. За сколько дней мог убрать поле комбайн, если
одному из них для выполнения этой работы потребовалось бы на 6 дней меньше, чем
другому?
Контрольная работа № 6 по теме: «Дробные рациональные уравнения».
8 класс.
2
х
х
2
12
2
х
Вариант 1.
1.Решите уравнение:
а)
2.Решите задачу: Катер прошел 12 км против течения реки и 5 км по
течению. При этом он затратил столько времени, сколько ему потребовалось
бы, если бы он шел 18 км по озеру. Какова собственная скорость катера, если
скорость течения реки равна 3 км/ч?
; б)
3
х
9
6
5
х
9
2
х
.
3
3. Функция задана формулой
х значение данной функции равно нулю.
х
у
2
х
2
х
1
2
. Определите, при каком значении
Вариант 2.
1.Решите уравнение:
а)
2
3
х
2
х
4
16
х
х
2
16
; б)
3
х
5
8
х
2
.
2.Решите задачу: Катер прошел 15 км против течения и 6 км по течению,
затратив на весь путь столько же времени, сколько ему потребовалось бы, если бы он шел 22 км по озеру. Какова собственная скорость катера, если
известно, что скорость течения реки равна 2 км/ч?
5
х
3. Функция задана формулой
х значение данной функции равно нулю.
у
2
х
х
2
6
4
. Определите, при каком значении
Контрольная работа № 8 по теме: «Решение неравенств и систем неравенств с одной
переменной». 8 класс.
Вариант 1.
1. Решите неравенство:
а) 1/6х < 5; б) 1 – 3х ≤ 0; в) 5(у – 1,2) – 4,6 > 3у + 1.
2. При каких а значение дроби (7 + а)/3 меньше соответствующего значения дроби (12
– а)/2 ?
3. Решите систему неравенств:
а) 2х – 3 > 0, б) 3 – 2х < 1;
7х + 4 > 0; 1,6х + х < 2,9.
4. Найдите целые решения системы неравенств: 6 – 2х < 3(х – 1),
6 – (х/2) ≥ х.
5. При каких значениях х имеет смысл выражение √3х – 2 + √6 – х ?
Вариант 2.
1. Решите неравенство:
а) 1/3х ≥ 2; б) 2 – 7х > 0; в) 6(у – 1,5) – 3,4 > 4у – 2,4.
2. При каких с значение дроби (с + 4)/2 больше соответствующего значения дроби
(5 – 2с)/3 ?
3. Решите систему неравенств:
а) 4х – 10 > 10, б) 1,4х + х > 1,5; 3х – 5 > 1; 5 – 2х > 2.
4. Найдите целые решения системы неравенств: 10 – 4х ≥ 3(1 – х),
3,5 + (х/4) < 2х.
5. При каких значениях а имеет смысл выражение √5а – 1 + √а + 8 ?
Контрольная работа № 5 по теме: «Квадратные уравнения». 8 «б»класс.
Вариант 1.
1. Решите уравнение: а) 2х2 + 7х – 9 = 0; б) 3х2 = 18х; в) 100х2 – 16 = 0;
г) х2 – 16х + 63.
2. Периметр прямоугольника равен 20 см. Найдите его стороны, если
известно, что площадь прямоугольника равна 24 см2.
3. В уравнении х2 + pх – 18 = 0 один из корней равен 9. Найдите другой
корень и коэффициент p.
4. Составьте квадратное уравнение, корни которого равны: 5 и 8.
Вариант 2.
1. Решите уравнение: а) 3х2 + 13х – 10 = 0; б) 2х2 – 3х = 0; в) 16х2 = 49;
г) х2 – 2х – 35 = 0. 2. Периметр прямоугольника равен 30 см. Найдите его стороны, если
известно, что площадь прямоугольника равна 56 см2.
3. Один из корней уравнения х2 + 11х + q = 0 равен – 7. Найдите другой
корень и свободный член q.
4. Составьте квадратное уравнение, корни которого равны: 9 и 4.
Контрольные и самостоятельные работы по математике 8 класс.
Контрольные и самостоятельные работы по математике 8 класс.
Контрольные и самостоятельные работы по математике 8 класс.
Контрольные и самостоятельные работы по математике 8 класс.
Контрольные и самостоятельные работы по математике 8 класс.
Контрольные и самостоятельные работы по математике 8 класс.
Контрольные и самостоятельные работы по математике 8 класс.
Контрольные и самостоятельные работы по математике 8 класс.
Контрольные и самостоятельные работы по математике 8 класс.
Контрольные и самостоятельные работы по математике 8 класс.
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.