Контрольные работы по математике 9 класс
Оценка 4.6

Контрольные работы по математике 9 класс

Оценка 4.6
Домашнее обучение +1
doc
математика
9 кл
31.01.2017
Контрольные работы по математике 9 класс
Контрольные работы ориентированны на учеников, обучающихся по учебникам Атанасян (геометрия 7-9) и Макарычев (Алгебра-9 под редакцией Теляковского). Контрольные состоят из двух вариантов по каждой теме, и направлены на выяснение уровня усвоения знаний учащимися. Контрольные разбиты по темам, можно использовать в качестве домашней работы.
контрольные 9 класс математика.doc
Алгебра Контрольная работа по теме:  «Функции и их свойства. Квадратный трехчлен» Вариант 1 .   При   каких   значениях   аргумента   )( xf  ,0 )( xf  ,0 )( xf  0 ?  x 17 )( xf 1.   Дана   функция   Является ли эта функция возрастающей или убывающей? 2. Разложите на множители квадратный трехчлен:        а)  51  .  6    2 14 х 45 х . 3. Сократите дробь  4.     Область   определения   функции  g  –   отрезок   6;2 . Найдите   нули   функции,   промежутки   возрастания   и убывания, область значений функции. 5.  Сумма положительных чисел а и b равна 50. При каких значениях а и b их произведение будет наибольшим?  у 7 2 ;  б)  2 3 3 2 у  р р  2 р 94 Вариант 2 . При каких значениях аргумента  )( xg  ,0 )( xg  ,0 )( xg  0 ? )( xg  x 13 1. Дана функция  Является ли эта функция возрастающей или убывающей? 2. Разложите на множители квадратный трехчлен:        а)  65   .  2   2 10 х 21 х ;  б)  2 4 c 1 5 2 у  7 c  16 c  у 9  2 2 . 3. Сократите дробь  4.     Область   определения   функции  f  –   отрезок   4;5 . Найдите нули функции, промежутки возрастания и убывания, область значений функции. 5.   Сумма положительных чисел  с  и  d  равна 70. При каких значениях c и d их произведение будет наибольшим? Критерии оценки: «5» ­ верно выполнены все задания; «4» ­ верно выполнены 4 задания; «3» ­ верно выполнены 3 задания. Контрольная работа по теме: «Квадратичная функция» Вариант 1 . Найдите с помощью графика: 2 у х х 6 5   1. Постройте график функции  а) значение у при х = 0,5; б) значения х, при которых  у = – 1; в) нули функции; промежутки, в которых y > 0 и в которых y < 0; г) промежуток, на котором функция возрастает. 2. Найдите наименьшее значение функции   3. Найдите область значений функции  х    .  , где   х х 6 х 8 13 у 2 7 у 2  7;2х . 1 у  4 4.  Не выполняя построения, определите, пересекаются ли парабола  2 х  и прямая  у 5  х 16 .  Если точки пересечения существуют, то найдите их координаты. 5.  Найдите значение выражения  3  3  3 8 12 4 7 58 81 . Вариант 2 . Найдите с помощью графика: 2 х у х 8  13  1. Постройте график функции  а) значение у при х = 1,5; б) значения х, при которых  у = 2; в) нули функции; промежутки, в которых y > 0 и в которых y < 0; г) промежуток, на котором функция убывает. 2. Найдите наибольшее значение функции   у 3. Найдите область значений функции  2 х  4   7 х х у  2  .  4 6 х 5;1х , где   4.  Не выполняя построения, определите, пересекаются ли парабола  Если точки пересечения существуют, то найдите их координаты. 5.  Найдите значение выражения  3  2 10 27  58 4 1 16 . Критерии оценки: «5» ­ верно выполнены все задания; «4» ­ верно выполнены 3, 4 задания; «3» ­ верно выполнены 2 задания. . у  1 5 2 х  и прямая  у 20  3 х . Контрольная работа по теме:  «Уравнения и неравенства с одной переменной» Вариант 1 1. Решите уравнение: у у 3  5  2   у 3  у 32 . 10 2 у у         а)  3 х  81 х  0 ; б)   х 4 13 2 2 х  9 2. Решите неравенство:        а)  06 3. Решите неравенство методом интервалов:   x       а)   x 4. Решите биквадратное уравнение  5  7 2 x ; б)  ; б)      9 0 .  0 7 4 8 х х х    . 5.  При каких значениях т уравнение  6.  Найдите область определения функции  3 2 x  4 x  mx  19 2 48 0 x  имеет два корня?  0 3 . 7.  Найдите координаты точек пересечения графиков функций  y  3 x  x 2  и   y y  x 2x . Вариант 2  x 2 3 x  1 . 1. Решите уравнение:  3  х х 1  3  25  0 2 2 х ; б)        а)   2  у  у 2 16 у 3 у 2 у 4 2. Решите неравенство:        а)  3. Решите неравенство методом интервалов:  x       а)  . x 4. Решите биквадратное уравнение  3  8 2 x  11 ; б)  ; б)   х   15 16      0 0 .  0 9 2 х х х    5.  При каких значениях п уравнение  6.  Найдите область определения функции  2 2 x 4  x  nx 3  у 4 . 1  4 2 x  8 0 .  0 45  не имеет корней? 7.  Найдите координаты точек пересечения графиков функций  y  x 3 x  и   y  3  x x 2 4 . y  3 x  22 x . Критерии оценки: «5» ­ верно выполнены все задания; «4» ­ верно выполнены 5, 6 заданий; «3» ­ верно выполнены 4 задания. Контрольная работа по теме: «Уравнения и неравенства с двумя переменными» Вариант 1 1. Решите систему уравнений  x 2 2 x     y ,7  .1 y 2.   Периметр   прямоугольника   равен   28   м,   а   его   площадь       равна       40   м2.     Найдите     стороны прямоугольника. 3. Изобразите на координатной плоскости множество решений системы неравенств     х у 2 2  у ,9  .1 х 4. Не выполняя построения, найдите координаты точек пересечения параболы   х 6 у . у 2 х 4   и прямой 5.  Решите систему уравнений  у 2 2 х  х   ху ,7 у    2  .29 Вариант 2 1. Решите систему уравнений   x ху  ,2 3 y  .6 y    2.   Одна   из   сторон   прямоугольника   на   2   см   больше   другой   стороны.   Найдите   стороны прямоугольника, если его площадь равна   120см2.   3. Изобразите на координатной плоскости множество решений системы неравенств     х х 2 2  у ,16  .2 у 4.   Не   выполняя   построения,   найдите   координаты   точек   пересечения   окружности   прямой  2  у 5 х . 2 х 5.  Решите систему уравнений   2 у х 3 х 2  ,1  ху у 2  .9    Критерии оценки:  у 2 10   и «5» ­ верно выполнены все задания; «4» ­ верно выполнены 4 задания; «3» ­ верно выполнены 3 задания. Контрольная работа по теме: «Арифметическая прогрессия» Вариант 1 1. Найдите  двадцать  третий  член арифметической прогрессии   и   2. Найдите сумму шестнадцати первых членов арифметической прогрессии: 8; 4; 0; … .   3.     Найдите   сумму   шестидесяти   первых   членов   последовательности   bn 4.   Является   ли   число   54,5   членом   арифметической   прогрессии   9 a 5.  Найдите  сумму  всех  натуральных  чисел, кратных 3 и не превосходящих 100. nа ,   в   которой   nа , если  a 1 3  n 5,5 15 1 ? . 1 a 3d . nb ,   заданной   формулой Вариант 2 1. Найдите  восемнадцатый  член арифметической прогрессии  3d 2. Найдите сумму двадцати первых членов арифметической прогрессии: – 21; – 18; – 15; … .  3.     Найдите   сумму   сорока     первых     членов   последовательности   bn 4.   Является   ли   число   30,4   членом   арифметической   прогрессии   15 a 5.  Найдите  сумму  всех  натуральных  чисел, кратных 7 и не превосходящих 150. nа ,   в   которой   nа , если  4  n 1 a 2,17  и   70 1 a 2 ? . nb ,   заданной   формулой 5,25   и . 6,11   и Критерии оценки: «5» ­ верно выполнены все задания; «4» ­ верно выполнены 3, 4 задания; «3» ­ верно выполнены 2 задания. Контрольная работа по теме:  «Геометрическая прогрессия» nb , если  Вариант 1 1. Найдите  седьмой  член геометрической прогрессии  2. Первый член геометрической прогрессии   шести первых членов этой прогрессии. 3.  Найдите сумму бесконечной геометрической прогрессии: 24; –12; 6; … . 4.   Найдите   сумму   девяти     первых     членов   геометрической   прогрессии   членами, зная, что  5.  Представьте  в  виде  обыкновенной  дроби бесконечную десятичную дробь:          а) 0,(27);         б) 0,5(6). b 1 4 b 2 b 04,0 16,0 32  и  .  и   1q 2 . nb   равен 2, а знаменатель равен 3. Найдите сумму nb   с   положительными nb , если  Вариант 2 1. Найдите  шестой  член геометрической прогрессии  2. Первый член геометрической прогрессии   семи первых членов этой прогрессии. 3.  Найдите сумму бесконечной геометрической прогрессии: – 40; 20; – 10; … . 4.   Найдите   сумму   восьми     первых     членов   геометрической   прогрессии    членами, зная, что  5.  Представьте  в  виде  обыкновенной  дроби бесконечную десятичную дробь:          а) 0,(153);         б) 0,3(2). 1 b 2 b 4 b 81,0 2,1 8,4  и  .  и   nb   равен 6, а знаменатель равен 2. Найдите сумму 1q 3 . nb   с   положительными Критерии оценки: «5» ­ верно выполнены все задания; «4» ­ верно выполнены 3, 4 задания; «3» ­ верно выполнены 2 задания. Контрольная работа по теме:  «Элементы комбинаторики и теории вероятностей» Вариант 1 1. Сколькими способами могут разместиться 5 человек в салоне автобуса на 5 свободных местах? 2. Сколько трехзначных чисел, в которых нет одинаковых цифр, можно составить из цифр 1, 2, 5, 7, 9? 3.   Победителю     конкурса     книголюбов   разрешается   выбрать   две   книги   из   10   различных   книг. Сколькими способами он может осуществить этот выбор? 4. В доме 90 квартир, которые распределяются по жребию. Какова вероятность того, что жильцу не достанется квартира на первом этаже, если таких квартир 6? 5.  Из 8 мальчиков и 5 девочек надо выделить для работы на пришкольном участке 3 мальчиков и 2 девочек. Сколькими способами это можно сделать? 6.  На четырех карточках  записаны  цифры  1, 3, 5, 7.  Карточки перевернули и перемешали. Затем наугад последовательно положили эти карточки в ряд одну за другой и открыли. Какова вероятность того, что в результате получится число 3157? Вариант 2 1. Сколько шестизначных чисел можно составить из цифр 1, 2, 3, 5, 7, 9 без повторений цифр? 2. Из 8 учащихся класса, успешно выступивших на школьной олимпиаде, надо выбрать двух для участия в городской олимпиаде. Сколькими способами можно сделать этот выбор? 3. Из 15 туристов надо выбрать дежурного и его помощника. Какими способами это можно сделать? 4. Из 30 книг, стоящих на полке, 5 учебников, а остальные художественные произведения. Наугад берут с полки одну книгу. Какова вероятность того, что она не окажется учебником? 5.  Из 9 книг и 6 журналов надо выбрать 2 книги и 3 журнала. Сколькими способами можно сделать этот выбор? 6.   На пяти карточках   написаны   буквы  а, в, и, л, с.   Карточки перевернули и перемешали. Затем наугад последовательно положили эти карточки в ряд одну за другой и открыли. Какова вероятность того, что в результате получится слово «слива»? Критерии оценки: «5» ­ верно выполнены все задания; «4» ­ верно выполнены 5 заданий; «3» ­ верно выполнены 4 задания. Итоговая контрольная работа по алгебре    а а    Вариант 1  2  2 . 2 2    3. Решите неравенство  1. Упростите выражение  2. Решите систему уравнений   а а   2 а 3 а   у ,6 х  ху .16     25,1 х 3    5 3 а а  10 а 5.   Постройте   график   функции    положительные значения. 6.  В фермерском хозяйстве под гречиху было отведено два участка. С первого участка собрали 105 ц гречихи, а со второго, площадь которого на 3 га больше, собрали 152 ц. Найдите площадь каждого участка, если известно, что урожайность гречихи на первом участке была на 2 ц с 1 га больше, чем на втором. . Укажите, при каких значениях  х  функция принимает  в виде степени с основанием а. 4. Представьте выражение  у 2 х  4 x  5,1 5 х 4 . 1. Упростите выражение     х х 2. Решите систему уравнений  3. Решите неравенство  2 х  4. Представьте выражение  Вариант 2 : х х   1 3 .  45,0 x  3 .     3 х   3 3 х    у ,2 х   ху .15    x 5,4 6   6 8 y y  16 y   в виде степени с основанием у. 5.  Постройте  график  функции    отрицательные значения. 6.  Из пункта А в пункт В,  расстояние  между которыми   45 км,  выехал  велосипедист.  Через 30 мин вслед за ним выехал второй велосипедист, который прибыл в пункт В на 15 мин раньше первого. Какова скорость первого велосипедиста, если она на 3 км/ч меньше скорости второго? . Укажите, при каких значениях х функция принимает  х 12  у Критерии оценки: «5» ­ верно выполнены все задания; «4» ­ верно выполнены 5 заданий; «3» ­ верно выполнены 4 задания. Геометрия Контрольная работа по теме: «Векторы. Метод координат» 1. Найдите координаты и длину вектора   r ,а Вариант 1 r    b  если  r а r r c b ,   3; 2 ,  r c    6;2 . 1 2 2. Даны координаты вершин треугольника ABC: A (­6; 1), B (2; 4), С (2; ­2). Докажите, что  треугольник  ABC равнобедренный, и найдите высоту  треугольника, проведенную из      вершины  A.  2 у   Напишите уравнение прямой, проходящей через  9. 3. Окружность задана уравнением   2  1 её центр и параллельной оси ординат. х 1. Найдите координаты и длину вектора   r ,b Вариант 2 r r 1  c d c , 3 r b  если   r    3;6 , r d   2; 2 .  2. Даны координаты вершин четырехугольника  ABCD: A (­6; 1), B (0; 5), С (6; ­4),D (0; ­8). Докажите, что ABCD – прямоугольник, и найдите координаты точки пересечения его диагоналей. 3. Окружность задана уравнением   Напишите уравнение прямой, проходящей  16.    2   у через её центр и параллельной оси абсцисс.  1  х 2 2 Контрольная работа по теме: «Соотношения между сторонами и углами треугольника.  Скалярное произведение векторов» Вариант 1 1. Найдите угол между лучом ОА и положительной полуосью Ох, если А(­1; 3).  2. Решите треугольник АВС, если  3.  Найдите косинус угла М треугольника KLM, если К(1; 7), L(­2; 4), М(2; 0). o 105 ,     o 30 , 3 2 BC cм . C B  Вариант 2 1. Найдите угол между лучом ОВ и положительной полуосью Ох, если В(3; 3).  2. Решите треугольник ВСD, если  3. Найдите косинус угла А треугольника АВC, если А(3; 9), В(0;6), С(4;2).   o 60 ,   B o 45 , D BC  cм 3 . Критерии оценки: «5» ­ верно выполнены все задания; «4» ­  выполнены 3 задания, но есть ошибка; «3» ­ верно выполнены 2 задания. Контрольная работа по теме: «Длина окружности и площадь круга» Вариант 1 1. Периметр правильного треугольника, вписанного в окружность, равен 45 см. Найдите  сторону правильного восьмиугольника, вписанного в ту же окружность. 2. Найдите площадь круга, если площадь вписанного в ограничивающую его окружность  квадрата равна 72 дм2. 3. Найдите длину дуги окружности радиуса 3 см, если её градусная мера равна 150о. Вариант 2 1. Периметр правильного шестиугольника, вписанного в окружность, равен 48 см. Найдите  сторону квадрата, вписанного в ту же окружность. 2. Найдите длину окружности, если площадь вписанного в  неё правильного шестиугольника   равна  3. Найдите площадь кругового сектора, если градусная мера его дуги равна  120о, а радиус  72 2см . 2 круга равен  12 см. Критерии оценки: «5» ­ верно выполнены все задания; «4» ­  выполнены 3 задания, но есть ошибка; «3» ­ верно выполнены 2 задания. Контрольная работа по теме:  «Движения» Вариант 1 1.  Дана трапеция АВСD.  Постройте фигуру, на которую отображается эта трапеция при  симметрии относительно прямой, содержащей боковую сторону АВ. 2. Две окружности с центрами О1 и О2, радиусы которых равны, пересекаются в точках M и N.  Через точку М проведена прямая, параллельная О1О2  и пересекающая окружность с центром  О2 в точке D. Используя параллельный перенос, докажите, четырехугольник О1МDО2 является  параллелограммом. Вариант 2 1.  Дана трапеция АВСD.  Постройте фигуру, на которую отображается эта трапеция при  симметрии относительно точки, являющейся серединой боковой стороны CD.. 2.  Дан шестиугольник А1А2А3А4А5А6. Его стороны А1А2 и А4А5, А2А3 и А5А6, А3А4 и А6А1  попарно равны и параллельны. Используя центральную симметрию, докажите, что диагонали  А1А4, А2А5, А3А6 данного шестиугольника пересекаются в одной точке. Критерии оценки: «5» ­ верно выполнены все задания; «4» ­  выполнены 2 задания, но есть ошибка; «3» ­ верно выполнено 1 задание.

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс

Контрольные работы по математике 9 класс
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
31.01.2017