Метод интервалов для непрерывных функций

  • Презентации учебные
  • ppt
  • 10.04.2020
Публикация на сайте для учителей

Публикация педагогических разработок

Бесплатное участие. Свидетельство автора сразу.
Мгновенные 10 документов в портфолио.

Метод интервалов для непрерывных функций
Иконка файла материала Метод интервалов для непрерывных функций.ppt

Метод интервалов для непрерывных функций

Определение 1: Если lim f(x) = f(x0) при х х0, то функцию f(x) называют непрерывной в точке х0.

Определение №2:
Если функция непрерывна в каждой точке некоторого промежутка I , то ее называют непрерывной на промежутке I (промежуток I называют промежутком непрерывности функции). График функции на этом промежутке представляет собой непрерывную линию, о которой говорят, что ее можно «нарисовать, не отрывая карандаша от бумаги».

Метод решения неравенств с одной переменной (Метод интервалов) основан на свойстве непрерывных функций.
Свойство:
Если на интервале (a; b) функция f(х) непрерывна и не обращается в нуль, то она на этом интервале сохраняет постоянный знак.
Пусть функция f (х)непрерывна на интервале I и обращается в нуль в конечном числе точек этого интервала. По сформулированному выше свойству непрерывных функций этими точками I разбивается на интервалы, в каждом из которых непрерывная функция f(х) сохраняет постоянный знак. Чтобы определить этот знак, достаточно вычислить значение функции f в какой-либо одной точке из каждого такого интервала.

Алгоритм решения неравенств методом интервалов

Найти область определения функции f(x);

Найти нули функции f(x);

На числовую прямую нанести область определения и нули функции. Нули функции разбивают ее область определения на промежутки, в каждом из которых функция непрерывна и сохраняет постоянный знак;

Найти знаки функции в полученных промежутках, вычислив значение функции в какой-либо одной точке из каждого промежутка;

Записать ответ.

Решим неравенство

1) Найдем область определения неравенства:

откуда

3) Находим корни многочлена и определяем их кратность:
х =1 (четная кратность), корни 3, -1, 0, 5, -2 (нечетная кратность).

4) Определим знак многочлена при х = 10, и расставим остальные знаки с учетом кратности корней.

Решите неравенство

1 вариант:

2 вариант:

Сделайте выводы о смене знака на интервалах, в зависимости от степени кратности корня.

выводы:

Решение уравнений и неравенств требует от учащихся глубоких теоретических знаний, умений применять их на практике, требует внимания трудолюбия, сообразительности.
Решить неравенство:

1.Решить неравенство:

2.Решить неравенство