Методическая разработка урока по дисциплине "Теория горения и взрыва" на тему "Физико-химические основы горения"
Оценка 4.8

Методическая разработка урока по дисциплине "Теория горения и взрыва" на тему "Физико-химические основы горения"

Оценка 4.8
docx
20.09.2023
Методическая разработка урока по дисциплине "Теория горения и взрыва" на тему "Физико-химические основы горения"
Лекция 16.docx

Лекция № 16

Химические процессы при горении водорода.

Горение углеводородов и углерода.

 

Водород считается одним из наиболее перспективных топлив как эффективный и экологически чистый энергоноситель. С практической точки зрения горение водорода связано с его использованием в энергетических установках и топливных элементах и безопасностью соответствующих технологических процессов и устройств[1]. Удельная теплота сгорания водорода составляет примерно 140 МДж/кг (верхняя) или 120 МДж/кг (нижняя), что в несколько раз превышает удельную теплоту сгорания углеводородных топлив (для метана — около 50 МДж/кг).

Смеси водорода с кислородом или воздухом взрывоопасны и называются гремучим газом (название происходит от knallgas, нем. knall — громкий хлопок, резкий звук выстрела или взрыва). При зажигании искрой или другим источником смесь водорода с воздухом небольшого объёма сгорает чрезвычайно быстро, с громким хлопком, что субъективно воспринимается как взрыв. В физике горения такой процесс считается медленным горением, или дефлаграцией, однако гремучий газ способен и к детонации, при этом действие взрыва оказывается существенно более сильным.

Наиболее опасны околостехиометрические смеси, где на один моль кислорода приходится два моля водорода, то есть, с учётом того, что в воздухе соотношение кислорода и азота по объёму составляет примерно 1:3,76, объёмное соотношение водорода с воздухом в гремучем газе в стехиометрическом соотношении составляет 2:4,76 ≈ 0,4. Однако гремучий газ способен гореть в широком диапазоне концентраций водорода, от 4 — 9 объёмных процентов в бедных смесях до 75% в богатых смесях, приблизительно в этих же пределах он способен и детонировать[2].

Гремучий газ самовоспламеняется при атмосферном давлении и температуре 510 °C. При комнатной температуре в отсутствие источников зажигания (искра, открытое пламя) гремучий газ может храниться неограниченно долго, однако он способен взорваться от самого слабого источника, так как для инициирования взрыва достаточно искры с энергией 17 микроджоулей[3]. С учётом того, что водород обладает способностью проникать через стенки сосудов, в которых он хранится, например, диффундировать сквозь металлические стенки газового баллона, и не обладает никаким запахом, при работе с ним следует быть чрезвычайно осторожным.

Химические процессы при горении водорода

Взаимодействие молекулы водорода с молекулой кислорода проте­кает сложным путем через ряд последовательных стадий. В настоящее время твердо установлено, что горение водорода происходит по цепному механизму, причем роль активных центров играют частицы Химические процессы при горении водорода. Последовательность и значение элементарных реакций при горении водорода описаны очень подробно для различных условий возникновения и развития водородных пламен.

Наиболее подробный анализ процесса горения водорода в режиме самовоспламенения экспериментальным и расчетным методами выполнен профессором А. Н. Баратовым. Им предложена следующая схема процес­са, включающая четырнадцать основных элементарных реакций:

— зарождение активных центров происходит по реакции

Химические процессы при горении водорода

— продолжение цепей по реакциям

Химические процессы при горении водорода

(0)

(1)

(2) (3) (4) (5)

— разветвление цепей

Химические процессы при горении водорода

(6) (7) (8)

Обрыв цепей

Химические процессы при горении водорода

(9) (10)

(П) (12) (13)

Концентрация атомов водорода в начальной стадии процесса само­воспламенения составляет незначительную часть от начального содержа­ния водорода. При развитии цепной реакции скорость превращения моле­кулярного водорода становится столь высокой, что он расходуется за со­тые доли секунды.

Горение оксида углерода и углеводородов.

По разветвленным цепным реакциям протекает горение и других составляющих газообразных топлив: оксида углерода, метана и других углеводородов. На горение оксида углерода существенное влияние оказывает наличие в газе паров воды, которые участвуют в реакциях продолжения цепей. Поэтому в выражение для скорости горения оксида углерода входит концентрация паров воды:

http://konspekta.net/zdamsamru/baza1/84990816384.files/image338.gif. (3.7)

Как показывает эксперимент, сухой оксид углерода практически не горит. Это связано с тем, что в отсутствие радикалов Н и ОН горение СО не имеет разветвленного цепного механизма. При появлении атомарного кислорода О2 + ν = 2О, он тут же вступает в реакцию с оксидом углерода О + СО = СО2, что приводит к обрыву цепей. Появление в смеси радикалов Н и ОН приводит к образованию дополнительных радикалов О (Н + О2 = ОН + О). Кроме того, при протекании реакции ОН + СО = СО2 + Н дополнительно генерируются радикалы Н, что приводит к разветвленному механизму горения СО. Таким образом, при помощи водяных паров или водорода в пламени создаются концентрации Н и ОН, необходимые для реакций разветвления цепей.

Экспериментально установлено, что скорость горения углеродов меньше, чем скорость горения водорода и оксида углерода. Горение их протекает по более сложным механизмам, одновременно с процессом горения углеводородов протекают реакции термического разложения с образованием сажистого углерода. Полное описание горения метана предполагает рассмотрение более 400 реакций. Основные из них следующие: реакция отщепления первого атома водорода от метана в присутствии кислорода (СН4 + О2 ® СН3 + Н + О2), образование радикалов О и ОН (Н + О2 ® ОН + О), реакции образования и окисления метанола и диссоциация формальдегида (СН3 + ОН ® СН3ОН, СН3ОН + О ® НСНО + Н2О, НСНО ® Н2 + СО) с образованием водорода и оксида углерода. Далее водород и оксид углерода сгорают по своим цепным механизмам. В отсутствии кислорода идет термическая диссоциация метана с образованием в конечном итоге сажистого углерода (СН4 = 2Н2 + С).

 

 


 

Скачано с www.znanio.ru

Лекция № 16 Химические процессы при горении водорода

Лекция № 16 Химические процессы при горении водорода

Последовательность и значение элементарных реакций при горении водорода описаны очень подробно для различных условий возникновения и развития водородных пламен

Последовательность и значение элементарных реакций при горении водорода описаны очень подробно для различных условий возникновения и развития водородных пламен

Поэтому в выражение для скорости горения оксида углерода входит концентрация паров воды:

Поэтому в выражение для скорости горения оксида углерода входит концентрация паров воды:
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
20.09.2023