Лекция 2. Понятие математической модели
Под математическим моделированием, в узком смысле слова, понимают описание в виде уравнений и неравенств реальных физических, химических, технологических, биологических, экономических и других процессов. Для того чтобы использовать математические методы для анализа и синтеза различных процессов, необходимо уметь описать эти процессы на языке математики, то есть описать в виде системы уравнений и неравенств.
Как методология научных исследований математическое моделирование сочетает в себе опыт различных отраслей науки о природе и обществе, прикладной математики, информатики и системного программирования для решения фундаментальных проблем. Математическое моделирование объектов сложной природы – единый сквозной цикл разработок от фундаментального исследования проблемы до конкретных численных расчетов показателей эффективности объекта. Результатом разработок бывает система математических моделей, которые описывают качественно разнородные закономерности функционирования объекта и его эволюцию в целом как сложной системы в различных условиях. Вычислительные эксперименты с математическими моделями дают исходные данные для оценки показателей эффективности объекта. Поэтому математическое моделирование как методология организации научной экспертизы крупных проблем незаменимо при проработке народнохозяйственных решений (в первую очередь это относится к моделированию экономических систем).
По своей сути математическое моделирование есть метод решения новых сложных проблем, поэтому исследования по математическому моделированию должны быть опережающими. Следует заранее разрабатывать новые методы, готовить кадры, умеющие со знанием дела применять эти методы для решения новых практических задач.
Математическая модель может возникнуть тремя путями:
1. В результате прямого изучения реального процесса. Такие модели называются феноменологическими.
2. В результате процесса дедукции. Новая модель является частным случаем некоторой общей модели. Такие модели называются асимптотическими.
3. В результате процесса индукции. Новая модель является обобщением элементарных моделей. Такие модели называют моделями ансамблей.
Процесс моделирования начинается с моделирования упрощенного процесса, который с одной стороны отражает основные качественные явления, с другой стороны допускает достаточно простое математическое описание. По мере углубления исследования строятся новые модели, более детально описывающие явление. Факторы, которые считаются второстепенными на данном этапе, отбрасываются. Однако, на следующих этапах исследования, по мере усложнения модели, они могут быть включены в рассмотрение. В зависимости от цели исследования один и тот же фактор может считаться основным или второстепенным.
Математическая модель и реальный процесс не тождественны между собой. Как правило, математическая модель строится с некоторым упрощением и при некоторой идеализации. Она лишь приближенно отражает реальный объект исследования, и результаты исследования реального объекта математическими методами носят приближенный характер. Точность исследования зависит от степени адекватности модели и объекта и от точности применяемых методов вычислительной математики.
Схема построения математических моделей следующая:
1. Выделение параметра или функции, подлежащей исследованию.
2. Выбор закона, которому подчиняется эта величина.
3. Выбор области, в которой требуется изучить данное явление.
В практике математического моделирования исходным пунктом часто является некоторая эмпирическая ситуация, выдвигающая перед исследователем задачу, на которую требуется найти ответ. Прежде всего, необходимо установить, в чѐм именно заключается задача. Часто (но не всегда) параллельно с этой стадией постановки задачи идѐт процесс выявления основных или существенных особенностей явления (слайд 1.1). В частности для физических явлений этот процесс схематизации или идеализации играет решающую роль поскольку в реальном явлении участвует множество процессов и оно чрезвычайно сложно. Некоторые черты явления представляются важными многие другие - несущественными. Возьмѐм к примеру движение маятника, образованного тяжѐлым грузом, подмешанным на конце нити. В этом случае существенным является регулярный характер колебаний маятника, а несущественным – то, что нить белая, а груз чѐрный. После того как существенные факторы выявлены, следующий шаг состоит в переводе этих факторов на язык математических понятий и величин и постулировании соотношений между этими величинами. После построения модели еѐ следует подвергнуть проверке. Адекватность модели до некоторой степени проверяется обычно в ходе постановки задачи. Уравнения или другие математические соотношения, сформулированные в модели, постоянно сопоставляются с исходной ситуацией. Существует несколько аспектов проверки адекватности. Во- первых, сама математическая основа модели (которая и составляет еѐ существо) должна быть непротиворечивой и подчиняться всем обычным законам математической логики. Во-вторых, справедливость модели зависит от еѐ способности адекватно описывать исходную ситуацию. Модель можно заставить отражать действительность, однако она не есть сама действительность.
Ситуации моделируют для разных целей. Главная из них – необходимость предсказывать новые результаты или новые свойства явления. Эти предсказания могут быть связаны с распространением существующих результатов или иметь более принципиальный характер. Часто они относятся к условиям, которые, по всей вероятности, будут иметь место в некоторый момент в будущем. С другой стороны, предсказания могут относится к событиям, непосредственное экспериментальное исследование которых неосуществимо. Наиболее важный пример такого рода дают многочисленные прогнозы, которые делались на основе математических моделей в программе космических исследований. Однако для этой цели моделируются не все ситуации: в некоторых случаях достаточно уметь описывать математическими средствами работу системы для того, чтобы добиться более глубокого понимания явления (именно эту роль и играют многие выдающиеся физические теории, хотя на их основе делаются также и прогнозы). Обычно при таком математическом описании не учитывается элемент контроля, однако в моделях, построенных, например, для исследования работы сетей, таких как схемы движения поездов или самолѐтов, контроль часто является важным фактором.
Математическая модель представляет собой упрощение реальной ситуации. Ощутимое упрощение наступает тогда, когда несущественные особенности ситуации отбрасываются и сложная исходная задача сводится к
идеализированной задаче, поддающейся математическому анализу. Именно при таком подходе в классической прикладной механике возникли блоки без трения, невесомые нерастяжимые нити, невязкие жидкости, абсолютно твѐрдые или чѐрные тела и прочие подобные идеализированные модели. Эти понятия не существуют в реальной действительности, они являются абстракциями, составной частью идеализации, предпринятой автором модели. И тем не менее их часто можно с успехом считать хорошим приближением к реальным ситуациям. Описанный образ действий при построении математических моделей не является единственным, и этому совсем не стоит удивляться. В другом возможном подходе первым шагом является построение простой модели нескольких наиболее характерных особенностей явления. Это часто делается для того, чтобы почувствовать данную задачу, причѐм делается это ещѐ до того, как сама задача окончательно сформулирована. Затем эта модель обобщается, чтобы охватить другие факты, пока не будет найдено приемлемое или адекватное решение. Есть ещѐ подход, когда с самого начала вводится в рассмотрение одновременно большое число факторов. Он часто применяется в исследовании операций, и такие модели обычно изучают имитационными методами с использованием ЭВМ.
Важнейшее решение, которое часто принимается в самом начале процесса моделирования, касается природы рассматриваемых математических переменных. По существу они делятся на два класса. В один из них входят известные характеристики, т.е. величины, поддающиеся (по крайней мере теоретически) точному измерению и управлению. Такие переменные называются детерминированными переменными. В другой класс входят неизвестные характеристики, т.е. величины, которые никогда не могут быть точно измерены и имеют случайный характер – они называются стохастическими переменными. Модель, содержащая стохастические переменные, должна по определению описываться математическим аппаратом теории вероятностей и статистики. Детерминированные переменные часто, но не всегда требуют привлечения обычного математического анализа. Природа некоторых ситуаций бывает ясна не сразу, другие ситуации характеризуются переменными обоих типов. Для построения модели чрезвычайно важно, чтобы природа переменных была правильно представлена.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.