Практикум по теме «Площадь поверхности составного многогранника» 15 января 2020 г. 11 класс
Цель: практическое закрепление ЗУН.
Задачи из открытого банка задач.
1. Задание 8 № 25541
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 2, 3, 1 и двух площадей прямоугольников со сторонами 2, 1:
Ответ: 18.
2. Задание 8 № 25561
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 3, 3, 5 и двух площадей квадратов со стороной 1:
Ответ: 76.
3. Задание 8 № 25581
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 3, 4, 5 и площади двух квадратов со стороной 1:
Ответ: 92.
4. Задание 8 № 25601
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности заданного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 5:
Ответ: 110.
5. Задание 8 № 25621
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности заданного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 4:
Ответ: 94.
Примечание для тех, кто не верит в это решение.
Посчитайте площадь поверхности, сложив площади всех девяти граней данного многогранника, и смиритесь:
6. Задание 8 № 25641
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности заданного многогранника равна сумме площадей поверхности прямоугольного параллелепипеда с ребрами 6, 4, 4 и двух прямоугольников со сторонами 1 и 4, уменьшенной на площадь двух прямоугольников со сторонами 1 и 2:
Ответ: 132.
7. Задание 8 № 25661
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности заданного многогранника равна сумме площадей поверхности прямоугольного параллелепипеда с ребрами 4, 4, 5 и двух прямоугольников со сторонами 1 и 4, уменьшенной на площадь двух прямоугольников со сторонами 1 и 3:
Ответ: 114.
8. Задание 8 № 25681
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности заданного многогранника равна сумме площадей прямоугольников со сторонами 1, 3, 4 и 1, 2, 3, уменьшенной на удвоенную площадь прямоугольника со сторонами 2, 3:
Ответ: 48.
9. Задание 8 № 25701
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности заданного многогранника равна сумме площадей параллелепипедов с ребрами 1, 6, 4 и 1, 4, 4 уменьшенной на удвоенную площадь квадрата стороной 4:
Ответ: 84.
Приведем другое решение
Площадь поверхности заданного многогранника равна площади прямоугольного параллелепипеда с ребрами 6, 4, 2 уменьшенной на 4 площади квадратов со стороной 1:
10. Задание 8 № 25721
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности заданного многогранника равна сумме площадей большого и маленького параллелепипедов с ребрами 1, 5, 7 и 1, 1, 2, уменьшенной на 4 площади прямоугольника со сторонами 1, 2 — передней грани маленького параллелепипеда, излишне учтенной при расчете площадей поверхности параллелепипедов:
Ответ: 96.
11. Задание 8 № 25881
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности заданного многогранника равна сумме площадей параллелепипедов со сторонами 2, 3, 3 и 5, 4, 3 уменьшенной на удвоенную площадь прямоугольника со сторонами 3, 2:
Ответ: 124.
12. Задание 8 № 27071
Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы которого прямые.
Решение.
Площадь поверхности заданного многогранника складывается из четырех площадей квадратов со стороной 1, двух прямоугольников со сторонами 1 и 2 и двух граней (передней и задней), площади которых в свою очередь складываются из трех единичных квадратов каждая. Всего 4 + 4 + 6 = 14.
Ответ: 14.
13. Задание 8 № 27158
Найдите площадь поверхности пространственного креста, изображенного на рисунке и составленного из единичных кубов.
Решение.
Поверхности креста составлена из шести поверхностей кубов, у каждого из которых отсутствует одна грань. Тем самым, поверхность креста состоит из 30 единичных квадратов, поэтому ее площадь равна 30.
Ответ: 30.
14. Задание 8 № 77155
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности данного многогранника равна сумме площадей поверхностей прямоугольных параллелепипедов с рёбрами 6, 6, 2 и 3, 3, 4, уменьшенной на две площади прямоугольников со сторонами 3 и 4:
Ответ: 162.
15. Задание 8 № 77156
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности тела равна сумме поверхностей трех составляющих ее параллелепипедов с ребрами 2, 5, 6; 2, 5, 3 и 2, 2, 3, уменьшенная на удвоенные площади прямоугольников со сторонами 5 ,3 и 2, 3:
Ответ: 156.
16. Задание 8 № 77157
Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности тела равна сумме поверхностей трех составляющих его параллелепипедов с измерениями 2, 4, 6; 1, 6, 2 и 2, 2, 2:
Ответ: 152.
17. Задание 8 № 512330
Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).
Решение.
Площадь поверхности данного многогранника складывается из площадей двух параллелепипедов со сторонами 1, 3, 2 и 1, 2, 5 за вычетом двух площадей прямоугольников со сторонами 2 и 1, которые учитываются дважды в представленном многограннике:
Ответ: 52
© ООО «Знанио»
С вами с 2009 года.