"ПРАВИЛО СЛОЖЕНИЯ И ВЫЧИТАНИЯ ДРОБЕЙ С РАЗНЫМИ ЗНАМЕНАТЕЛЯМИ"
Оценка 4.7
Разработки уроков
docx
математика
8 кл
28.10.2019
Цели: формировать умение приводить рациональные дроби к общему знаменателю и выполнять их сложение и вычитание.
Ход урока
I. Организационный момент.
II. Проверочная работа.
В а р и а н т 1
Выполнить сложение и вычитание дробей:
а) ; г) ;
б) ; д) .
в) ;
В а р и а н т 2
Выполнить сложение и вычитание дробей:
а) ; г) ;
б) ; д) .
в) .
III. Устная работа.
– Найдите наименьший общий знаменатель дробей:
УРОК - копия (8).docx
ПРАВИЛО СЛОЖЕНИЯ И ВЫЧИТАНИЯ ДРОБЕЙ
С РАЗНЫМИ ЗНАМЕНАТЕЛЯМИ
Цели: формировать умение приводить рациональные дроби к
общему знаменателю и выполнять их сложение и вычитание.
Ход урока
I. Организационный момент.
II. Проверочная работа.
В а р и а н т 1
Выполнить сложение и вычитание дробей:
9
x
13
;
3
x
6
16
x
5
4
x
5
а)
г)
7
6
9
3
4
6
5
3
x
x
x
x
5
3
b
a
a b
4
a
b
2
b a
.
д)
;
;
В а р и а н т 2
;
3
a
3
a
2
2
5
a
3
a
б)
m
2
4
2
m
m
2
6
2
m
в)
;
2
5
6
a
3
a
б)
5
a
3
a
7
3
m
m
2
10
3
m
;
m
2
Выполнить сложение и вычитание дробей:
13
;
4
x
4
8
x
17
6
x
7
6
x
а)
г)
3
8
5
8
7
4
5
4
x
x
x
x
7
8
a
b
b a
6
7
a
b
a b
.
д)
.
в)
III. Устная работа.
– Найдите наименьший общий знаменатель дробей:
а)
1
2 ;
1
3 и
5
6 и
е)
б)
2
9 ;
1
6 ;
2
5 и
1
4 и
ж)
1
4 ;
1
2 и
5
27 ;
в)
2
3 и
з)
1
9 ; г)
5
21 ;
3
7 и
1
6 и 0,1;
и)
д)
1
6 ;
3
4 и
3
8 и
к)
5
6 . IV. Объяснение нового материала.
Приведение алгебраических дробей к общему знаменателю зачастую
вызывает у учащихся трудности. При объяснении этого вопроса можно
использовать аналогию с обыкновенными дробями.
В процессе проведения устной работы у учащихся была возможность
вспомнить, как найти общий знаменатель обыкновенных дробей. После
устной работы следует выделить три случая, которые возникают при
нахождении общего знаменателя, и привести аналогичные примеры с
алгебраическими дробями.
С л у ч а й 1. Знаменатели дробей не имеют общих
делителей.
знаменателей дробей.
В этом случае наименьший общий знаменатель равен произведению
7
О б ы к н о в е н н ы е д р о б и:
1
4
Р а ц и о н а л ь н ы е д р о б и:
4 ∙ 4
4 ∙ 7
16
28
23
28
7
28
4 ∙ 7
4
7
.
2
3
a
b
c
2 ∙
c
ac
3
3
ab
3
ac
2
3
c
ab
3
ac
.
1)
1
a b
1
a b
(
2)
a b
)(
a b a b
(
)
a b
)(
a b a b
)
a b
a b
)
(
a b a b
)(
)
(
=
a b a b
2
a
b
2
2
b
2
b
2
a
2
b
a
2
2
b
.
С л у ч а й 2. Знаменатель одной из дробей является
делителем знаменателя второй дроби.
В этом случае знаменатель, который делится на другой, является
наименьшим общим знаменателем дробей.
2
3
11
12
2 ∙ 4
3 ∙ 4
11
8
12 12
О б ы к н о в е н н ы е д р о б и:
11
12
Р а ц и о н а л ь н ы е д р о б и:
1
ab
2 2
a b
1
2 2
a b
1
2 2
a b
ab
2 2
a b
3
12
1
ab
1)
1
4
.
;
x
(
x x
1
y
)
3
x
y
x
(
x x
1
y
)
2)
3
x x
(
x
1 3
x
x
)
y
(
x x
4
x
x x
(
1
y
)
y
)
. С л у ч а й 3. Знаменатели дробей имеют общие
делители, но знаменатель одной из дробей не является
делителем знаменателя другой дроби.
В этом случае наименьший знаменатель состоит из нескольких
множителей: общего делителя дробей и результатов деления на этот
делитель.
3
1
6
3 ∙ 3
2 ∙ 2
О б ы к н о в е н н ы е д р о б и:
3
4
Р а ц и о н а л ь н ы е д р о б и:
6
c
2
abc
3 ∙ 2
c
abc
2
∙
b b
2
abc
2 ∙ 2 ∙ 3
b
2
ac
3
ab
2 ∙ 3
1)
1
2
2
2 ∙ 2 ∙ 3 12 12
9
7
12
.
2
b
2
abc
2
c b
6
abc
2
;
x
2
1
xy
y
2
2
xy
y
x
x x
(
1
y
)
y
(
y x
2
y
)
2)
x
y x
(
(
xy x
1)
y
)
x y
(
(
xy x
2)
)
y
xy
xy x
y
(
xy
y
)
2
x
2
x
xy x
(
y
y
)
.
=
V. Формирование умений и навыков.
1. № 73, № 75, № 76.
2. № 78 (а, г), № 79 (б, г).
3. № 84 (а, в, д), № 85 (а, в).
При выполнении № 85 учащиеся впервые будут складывать и вычитать
дроби, в которых для нахождения общего знаменателя необходимо сначала
разложить на множители знаменатели исходных дробей. Важно, чтобы
учащиеся осознавали это и использовали в дальнейшем при выполнении
действий с рациональными дробями.
№ 85.
3
в)
ax ay
2
by bx
3
(
a x
2
(
b y
x
)
y
)
)
y
y
=
3
b
2
ab x
(
3
(
a x
2
b x
(
VI. Итоги урока.
В о п р о с ы у ч а щ и м с я:
– Как найти общий знаменатель дробей, если их знаменатели не имеют
a
y
.
)
)
общих делителей? – Как найти общий знаменатель дробей, если знаменатель одной дроби
является делителем знаменателя другой дроби?
– Как найти общий знаменатель дробей, знаменатели которых имеют
общий делитель, не совпадающий ни с одним из знаменателей этих дробей?
Домашнее задание: № 74,№ 84 (б, г), № 85 (б, г).
"ПРАВИЛО СЛОЖЕНИЯ И ВЫЧИТАНИЯ ДРОБЕЙ С РАЗНЫМИ ЗНАМЕНАТЕЛЯМИ"
"ПРАВИЛО СЛОЖЕНИЯ И ВЫЧИТАНИЯ ДРОБЕЙ С РАЗНЫМИ ЗНАМЕНАТЕЛЯМИ"
"ПРАВИЛО СЛОЖЕНИЯ И ВЫЧИТАНИЯ ДРОБЕЙ С РАЗНЫМИ ЗНАМЕНАТЕЛЯМИ"
"ПРАВИЛО СЛОЖЕНИЯ И ВЫЧИТАНИЯ ДРОБЕЙ С РАЗНЫМИ ЗНАМЕНАТЕЛЯМИ"
"ПРАВИЛО СЛОЖЕНИЯ И ВЫЧИТАНИЯ ДРОБЕЙ С РАЗНЫМИ ЗНАМЕНАТЕЛЯМИ"
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.