Представление информации в различных системах счисления.
1. Восьмеричная система счисления. Используется восемь цифр: 0, 1, 2, 3, 4, 5, 6, 7. Употребляется в ЭВМ как вспомогательная - для записи информации в сокращенном виде. Для представления одной цифры восьмеричной системы используется три двоичных разряда (триада) (Таблица 1). Шестнадцатеричная система счисления. Для изображения чисел употребляются 16 цифр. Первые десять цифр этой системы обозначаются цифрами от 0 до 9, а старшие шесть цифр - латинскими буквами: 10-A, 11-B, 12-C, 13-D, 14-E, 15-F. Шестнадцатеричная система используется для записи информации в сокращенном виде. Для представления одной цифры шестнадцатеричной системы счисления используется четыре двоичных разряда (тетрада) (Таблица 1). Таблица 1. Наиболее важные системы счисления.
Перевод чисел в десятичную систему осуществляется путем составления степенного ряда с основанием той системы, из которой число переводится. Затем подсчитывается значение суммы. Пример. а) Перевести
10101101.1012 Здесь и в дальнейшем при одновременном использовании нескольких различных систем счисления основание системы, к которой относится число, будем указывать в виде нижнего индекса. 10101101.1012 = 1 б) Перевести 703.048 703.048 = 7 в) Перевести B2E.416 B2E.416 =
11 Перевод целых десятичных чисел в недесятичную систему счисления осуществляется последовательным делением десятичного числа на основание той системы, в которую оно переводится, до тех пор, пока не получится частное меньшее этого основания. Число в новой системе записывается в виде остатков деления, начиная с последнего. Пример. а) Перевести 18110 Результат: 18110 = 2658 б) Перевести 62210 Результат: 62210 = 26E16 Для перевода восьмеричного или шестнадцатеричного числа в двоичную форму достаточно заменить каждую цифру этого числа соответствующим трехразрядным двоичным числом (триадой) (Таб. 1) или четырехразрядным двоичным числом (тетрадой) (Таб. 1), при этом отбрасывают ненужные нули в старших и младших разрядах. Пример. а) Перевести 305.48 б) Перевести 7B2.E16 Для перехода от двоичной к восьмеричной (шестнадцатеричной) системе поступают следующим образом: двигаясь от точки влево и вправо, разбивают двоичное число на группы по три (четыре) разряда, дополняя, при необходимости нулями крайние левую и правую группы. Затем триаду (тетраду) заменяют соответствующей восьмеричной (шестнадцатеричной) цифрой. Пример. а) Перевести
1101111001.11012 б) Перевести
11111111011.1001112 Перевод из восьмеричной в шестнадцатеричную систему и обратно, осуществляется через двоичную систему с помощью триад и тетрад. Пример. Перевести
175.248 Результат: 175.248 = 7D.516.
|
Скачано с www.znanio.ru
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.