Презентация к уроку алгебры "Геометрическая прогрессия"

  • Презентации учебные
  • pptx
  • 27.05.2023
Публикация в СМИ для учителей

Публикация в СМИ для учителей

Бесплатное участие. Свидетельство СМИ сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала geom_progressiya.pptx

.

1

Алгебра 9 класс

Математические знания могут применяться умело с пользой лишь в том случае, если они усвоены творчески.
А.Н. Колмогоров

Дорогой друг!
Сегодня у тебя необычный урок математики. Сегодня ты еще раз убедишься в том, что математика не только интересна сама по себе, но она необычайно полезна. В ходе сегодняшнего урока тебя ожидает большая радость творчества и огромное поле приложения математических знаний и умений.
Желаю тебе успехов и творческих радостей на уроке!

2

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ

Способы задания

Рекуррентный

Аналитический

Словесный

Виды числовых
последовательностей

Арифметическая
прогрессия

?

3

Progessia (лат) -

«движение вперед»

4

Тема урока:
«Геометрическая прогрессия»

Ты уже знаешь, какая последовательность называется арифметической прогрессией.
Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом.

Сегодня ты познакомишься еще с одним видом последовательности, которая называется геометрической прогрессией.

5

Цели урока:

Сформулировать определение геометрической прогрессии.
Вывести формулу n-го члена геометрической прогрессии
Закрепить полученные знания на конкретных примерах

6

Но в начале познакомься с легендой о шахматной доске. Чтобы понять ее, вовсе не нужно уметь играть в шахматы: достаточно знать, что игра происходит на доске, разграфленной на 64 клетки (попеременно черные и белые)

7

Легенда о геометрической прогрессии

8

Шахматная игра была придумана в Индии, и когда индусский царь Шерам познакомился с нею, он был восхищен ее остроумием и разнообразием возможных в ней положений. Узнав, что она изобретена одним из его подданных, царь приказал его позвать, чтобы лично наградить за удачную выдумку. Изобретатель, его звали Сета, явился к трону повелителя. Это был скромно одетый ученый, получавший средства к жизни от своих учеников.

9

-Я желаю достойно вознаградить тебя, Сета, за прекрасную игру, которую ты придумал, -сказал царь.
Мудрец поклонился.

10

Ступай. Слуги мои вынесут тебе твой мешок с пшеницей.
Сета улыбнулся хитро, покинул дворец и стал дожидаться у ворот дворца.
Почему так хитро улыбнулся Сета?

Получается последовательность: 1, 2, 4, 8, 16, 32, 64,….
(запиши ее в тетрадь)

Запиши еще одну последовательность: 2, 6, 18, 54, 162, ….
Члены этой последовательности, начиная со второго, получаются путем умножения предыдущего на 3.
Приведенные примеры последовательностей являются геометрическими прогрессиями.

А теперь попробуй сформулировать определение геометрической прогрессии. Замечание: члены прогрессии должны быть отличны от нуля!

11


Определение: Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число.
Обозначим, например, через (bn) - геометрическую прогрессию, тогда по определению
bn+1= bnq, где bn 0, n - натуральное число, q - некоторое число.
Из определения геометрической прогрессии следует, что отношение любого ее члена, начиная со второго, к предыдущему члену равно q, т.е.
bn+1/ bn = q
Число q называют знаменателем геометрической прогрессии. Очевидно, что q ≠ 0.

Проверь себя!

12

Например, чтобы найти знаменатель геометрической прогрессии, представленной в легенде: 1, 2, 4, 8, 16,…,
нужно: 2 разделить на 1, или 4 разделить на 2 и т.д., т.е. q=2

13

Выполни самостоятельно:
Найти знаменатель геометрической прогрессии:
а) 3; 6; 12; 24;…
б) 3; 3; 3; 3; …..
в)1; 0,1; 0,01; 0,001;…


q = ?

14

Проверь себя!
а) q = 2
б) q = 1
в) q = 0,1
Ошибок нет? Молодец!
Если есть неправильные ответы, обратись к учителю.

Пусть b1 – первый член геометрической прогрессии, q – знаменатель, тогда:
b2 = b1 ·q
b3 = b2 · q = (b1 · q) · q = d1 · q2
b4 = b3 · q = (b1 · q2) · q = b1 · q3
b5 = ………………..= b1 · q4
Продолжи эту цепочку рассуждений в тетради и вырази bn через b1 и q.

15

Проверь себя!
bn=b1 qn-1 –формула n-го члена геометрической прогрессии.

1. В геометрической прогрессии (bn) известны
b1 =-2 и q = 3, найти: b3, b4.

2.Найти пятый член геометрической прогрессии (bn):-20; 40; ….

16

Выполни самостоятельно:

В геометрической прогрессии (xn) найти:
а) x5, если x1 = 16; q = ½
б) x3, если x1 = 3/4; q = 2/3.
в) x10, если x1 = 48; q = -1.

?

17

Проверь себя!
а) x5 = 1
б) x3 = 1/3
в) x10 = -48
Если ты испытывал затруднения, обратись к учителю.

Итак, просьба мудрого Сеты помогла тебе понять определение геометрической прогрессии, и теперь настало время узнать что-же было дальше….

18


С изумлением внимал царь словам старца.
- Назови мне это чудовищное число, сказал он в раздумьи.

Пусть все пространство их будет сплошь засеяно пшеницей. И все то, что родится на этих полях, прикажи отдать Сете. Тогда он получит свою награду…

19

-Восемнадцать квинтильонов четыреста сорок шесть квадрильонов семьсот сорок четыре триллиона семьдесят три биллиона семьсот девять миллионов пятьсот пятьдесят одна тысяча шестьсот пятнадцать, о повелитель!

18 446 744 073 709 551 615

20


Масса такого числа зерен больше триллиона тонн.
Индусский царь не в состоянии был выдать подобной награды.
Но будь он силен в математике, он бы не попал впросак…

21

Самооценка

6б – «5»
5б – «4»
3 – 4б – «3»

22

Домашняя работа







Числовая последовательность, члены которой отличны от нуля, являются геометрической прогрессией тогда и только тогда, когда модуль любого ее члена , начиная со второго, равен произведению предыдущего и последующих членов.
|bn|=

уровень

Уровень (*)

П.8. 1 – учить;

№480, №481(г,д,з)

+№12 из «Распечатай и реши» 5 задач на нахождение членов геометрической прогрессии

+Выведите формулу, выражающую характеристическое свойство геометрической прогрессии

23



Итак, благодаря поучительной истории с шахматной доской…

Я запомнил, что…

Я понял, что…

Мне на уроке …

Думаю, что …




Молодцы!

24

Спасибо за урок!

25