Internal Combustion engine
Разработала: А. Н. Ерина,
Преподаватель английского языка
Мурманск, 2020 год
Мурманское Государственное Образовательное Профессиональное Учреждение
по Мурманской Области «Мурманский строительный колледж им Н.Е.Момота. »
The internal combustion engine is an engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber. In an internal combustion engine the expansion of the high temperature and pressure gases, which are produced by the combustion, directly applies force to a movable component of the engine, such as the pistons or turbine blades and by moving it over a distance, generate useful mechanical energy.
The term internal combustion engine usually refers to an engine in which combustion is intermittent, such as the more familiar four-stroke and two-stroke piston engines.
Four stroke configuration
Operation
Four-stroke cycle
1. Intake
2. Compression
3. Power
4. Exhaust
1. The piston starts at the top, the intake valve opens, and the piston moves down to let the engine take in a cylinder-full of air and gasoline. This is the intake stroke. Only the tiniest drop of gasoline needs to be mixed into the air for this to work. (Part 1 of the figure)
2. Then the piston moves back up to compress this fuel/air mixture. Compression makes the explosion more powerful. (Part 2 of the figure)
3. When the piston reaches the top of its stroke, the spark plug emits a spark to ignite the gasoline. The gasoline charge in the cylinder explodes, driving the piston down. (Part 3 of the figure)
4. Once the piston hits the bottom of its stroke, the exhaust valve opens and the exhaust leaves the cylinder to go out the tailpipe. (Part 4 of the figure)
Now the engine is ready for the next cycle, so it intakes another charge of air and gas.
Combustion
Parts
Valves
All four-stroke internal combustion engines employ valves to control the admittance of fuel and air into the combustion chamber. Two-stroke engines use ports in the cylinder bore, covered and uncovered by the piston, though there have been variations such as exhaust valves.
Piston engine valves
In piston engines, the valves are grouped into 'inlet valves' which admit the entrance of fuel and air and 'outlet valves' which allow the exhaust gases to escape. Each valve opens once per cycle and the ones that are subject to extreme accelerations are held closed by springs that are typically opened by rods running on a camshaft rotating with the engines' crankshaft.
Control valves
Continuous combustion engines—as well as piston engines—usually have valves that open and close to admit the fuel and/or air at the startup and shutdown. Some valves feather to adjust the flow to control power or engine speed as well.
Piston
Flywheels
Spark plug
The spark plug supplies the spark that ignites the air/fuel mixture so that combustion can occur. The spark must happen at just the right moment for things to work properly.
Piston ringsPiston rings provide a sliding seal between the outer edge of the piston and the inner edge of the cylinder. The rings serve two purposes:
They prevent the fuel/air mixture and exhaust in the combustion chamber from leaking into the sump during compression and combustion.
They keep oil in the sump from leaking into the combustion area, where it would be burned and lost.
Most cars that "burn oil" and have to have a quart added every 1,000 miles are burning it because the engine is old and the rings no longer seal things properly.
Connecting rodThe connecting rod connects the piston to the crankshaft. It can rotate at both ends so that its angle can change as the piston moves and the crankshaft rotates.
Sump The sump surrounds the crankshaft. It contains some amount of oil, which collects in the bottom of the sump (the oil pan).
In a multi-cylinder engine, the cylinders usually are arranged in one of three ways: inline, V or flat (also known as horizontally opposed or boxer), as shown in the following figures.
Inline - The cylinders are arranged in a line in a single bank.
V - The cylinders are arranged in two banks set at an angle to one another.
Flat - The cylinders are arranged in two banks on opposite sides of the engine.
Different configurations have different advantages and disadvantages in terms of smoothness, manufacturing cost and shape characteristics. These advantages and disadvantages make them more suitable for certain vehicles.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.