Презентация Метаболизм. Фотосинтез. Теория ЕГЭ
Оценка 4.7

Презентация Метаболизм. Фотосинтез. Теория ЕГЭ

Оценка 4.7
pptx
12.03.2021
Презентация Метаболизм. Фотосинтез. Теория ЕГЭ
МЕТАБОЛИЗМ.Фотосинтез.pptx

МЕТАБОЛИЗМ (КАТАБОЛИЗМ И АНАБОЛИЗМ)

МЕТАБОЛИЗМ (КАТАБОЛИЗМ И АНАБОЛИЗМ)

МЕТАБОЛИЗМ (КАТАБОЛИЗМ И АНАБОЛИЗМ)

Гуськова С.А., учитель биологии МБОУ «Гатчинская СОШ №9 с углублённым изучением отдельных предметов»

ОГЭ, ЕГЭ

МЕТАБОЛИЗМ Анаболизм и катаболизм – это основные метаболические процессы

МЕТАБОЛИЗМ Анаболизм и катаболизм – это основные метаболические процессы

МЕТАБОЛИЗМ

Анаболизм и катаболизм – это основные метаболические процессы.
Катаболизм (диссимиляция, энергетический обмен) – это ферментативное расщепление сложных органических соединений, осуществляющееся внутри клетки за счет реакций окисления. Катаболизм сопровождается выделением энергии и запасанием ее в макроэргических фосфатных связях АТФ.
Анаболизм (ассимиляция, пластический обмен) – это синтез сложных органических соединений – белков, нуклеиновых кислот, полисахаридов – из простых предшественников, поступающих в клетку из окружающей среды или образующихся в процессе катаболизма. Процессы синтеза связаны с потреблением свободной энергии, которая поставляется АТФ

КАТАБОЛИЗМ В зависимости от биохимии процесса диссимиляции (катаболизма) различают дыхание и брожение

КАТАБОЛИЗМ В зависимости от биохимии процесса диссимиляции (катаболизма) различают дыхание и брожение

КАТАБОЛИЗМ

В зависимости от биохимии процесса диссимиляции (катаболизма) различают дыхание и брожение.
Дыхание – это сложный процесс биологического окисления различных соединений, сопряженный с образованием большого количества энергии, аккумулируемой в виде макроэргических связей в структуре АТФ (аденозинтрифосфат) и образованием углекислого газа и воды. Различают аэробное и анаэробное дыхание.
Брожение – неполный распад органических соединений с образованием незначительного количества энергии и продуктов, богатых энергией.

АНАБОЛИЗМ Анаболизм включает процессы синтеза , при которых используется энергия, вырабатываемая в процессе катаболизма

АНАБОЛИЗМ Анаболизм включает процессы синтеза , при которых используется энергия, вырабатываемая в процессе катаболизма

АНАБОЛИЗМ

Анаболизм включает процессы синтеза, при которых используется энергия, вырабатываемая в процессе катаболизма. В живой клетке одновременно и непрерывно протекают процессы катаболизма и анаболизма. Многие реакции и промежуточные продукты являются для них общими.
Живые организмы классифицируют в соответствии с тем, какой источник энергии или углерода они используют. Углерод – основной элемент живой материи. В конструктивном метаболизме ему принадлежит ведущая роль.
В зависимости от источника клеточного углерода все организмы, включая прокариотные, делят на автотрофы и гетеротрофы.

Автотрофы используют CO2 в качестве единственного источника углерода, восстанавливая его водородом, который отщепляется от воды или другого вещества

Автотрофы используют CO2 в качестве единственного источника углерода, восстанавливая его водородом, который отщепляется от воды или другого вещества

Автотрофы используют CO2 в качестве единственного источника углерода, восстанавливая его водородом, который отщепляется от воды или другого вещества. Органические вещества они синтезируют из простых неорганических соединений в процессе фото- или хемосинтеза.
Гетеротрофы получают углерод из органических соединений.

СОСТАВНЫЕ ЧАСТИ МЕТАБОЛИЗМА Часть

СОСТАВНЫЕ ЧАСТИ МЕТАБОЛИЗМА Часть

СОСТАВНЫЕ ЧАСТИ МЕТАБОЛИЗМА

Часть

Характеристика

Примеры

Затраты энергии

Катаболизм (энергетический обмен, диссимиляция)

Совокупность химических реакций, приводящих к образованию простых веществ из более сложных

Гидролиз полимеров до мономеров и расщепление последних до низкомолекулярных соединений углекислого газа, воды, аммиака и других веществ

Энергия выделяется

Анаболизм (пластический обмен, ассимиляция)

Совокупность химических реакций синтеза сложных веществ из более простых

Образование углеводов из углекислого газа и воды в процессе фотосинтеза, реакции матричного синтеза

Энергия поглощается


РОЛЬ АТФ В МЕТАБОЛИЗМЕ Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата…

РОЛЬ АТФ В МЕТАБОЛИЗМЕ Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата…

РОЛЬ АТФ В МЕТАБОЛИЗМЕ

Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ).

АТФ (аденозинтрифосфорная кислота) — мононуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты, соединяющихся между собой макроэргическими связями. По химической природе АТФ относится к мононуклеотидам.

В этих связях запасена энергия, которая высвобождается при их разрыве:

В этих связях запасена энергия, которая высвобождается при их разрыве:

В этих связях запасена энергия, которая высвобождается при их разрыве: АТФ + H2O → АДФ + H3PO4 + Q1 АДФ + H2O → АМФ + H3PO4 + Q2 АМФ + H2O → аденин + рибоза + H3PO4 + Q3,
где АТФ — аденозинтрифосфорная кислота; АДФ — аденозиндифосфорная кислота; АМФ — аденозинмонофосфорная кислота; Q1 = Q2 = 30,6 кДж; Q3 = 13,8 кДж.
Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования.
Фосфорилирование — присоединение остатка фосфорной кислоты к АДФ (АДФ + Ф → АТФ). Он происходит с разной интенсивностью при дыхании, брожении и фотосинтезе.

АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы

АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы

АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 мин).
Энергия, накопленная в молекулах АТФ, используется организмом в анаболических реакциях (реакциях биосинтеза).
Молекула АТФ является универсальным хранителем и переносчиком энергии для всех живых существ.

ПЛАСТИЧЕСКИЙ ОБМЕН – СОВОКУПНОСТЬ

ПЛАСТИЧЕСКИЙ ОБМЕН – СОВОКУПНОСТЬ

ПЛАСТИЧЕСКИЙ ОБМЕН – СОВОКУПНОСТЬ РЕАКЦИЙ СИНТЕЗА ОРГАНИЧЕСКИЙ ВЕЩЕСТВ

Вид пластического обмена

Материал

Источник энергии

Царства

Фотосинтез (синтез глюкозы)

Неорганические в-ва (СО2 и Н2О)

Свет

Растения

Хемосинтез (синтез глюкозы)

Окисление неорганических в-в

Некоторые бактерии

Биосинтез белков, НК, углеводов, липидов и др.

Органические в-ва

Распад и окисление органических в-в

Все

ЭНЕРГЕТИЧЕСКИЙ ОБМЕН Энергию, необходимую для жизнедеятельности, большинство организмов получают в результате процессов окисления органических веществ, то есть в результате катаболических реакций

ЭНЕРГЕТИЧЕСКИЙ ОБМЕН Энергию, необходимую для жизнедеятельности, большинство организмов получают в результате процессов окисления органических веществ, то есть в результате катаболических реакций

ЭНЕРГЕТИЧЕСКИЙ ОБМЕН

Энергию, необходимую для жизнедеятельности, большинство организмов получают в результате процессов окисления органических веществ, то есть в результате катаболических реакций. Важнейшим соединением, выступающим в роли топлива, является глюкоза.
По отношению к свободному кислороду организмы делятся на три группы.

КЛАССИФИКАЦИЯ ОРГАНИЗМОВ ПО ОТНОШЕНИЮ

КЛАССИФИКАЦИЯ ОРГАНИЗМОВ ПО ОТНОШЕНИЮ

КЛАССИФИКАЦИЯ ОРГАНИЗМОВ ПО ОТНОШЕНИЮ К СВОБОДНОМУ КИСЛОРОДУ

Группа

Характеристика

Организмы

Аэробы (облигатные аэробы)

Организмы, способные жить только в кислородной среде

Животные, растения, некоторые бактерии и грибы

Анаэробы (облигатные анаэробы)

Организмы, неспособные жить в кислородной среде

Некоторые бактерии

Факультативные формы (факультативные анаэробы)

Организмы, способные жить как в присутствии кислорода, так и без него

Некоторые бактерии и грибы

У облигатных аэробов и факультативных анаэробов в присутствии кислорода катаболизм протекает в три этапа:

У облигатных аэробов и факультативных анаэробов в присутствии кислорода катаболизм протекает в три этапа:

У облигатных аэробов и факультативных анаэробов в присутствии кислорода катаболизм протекает в три этапа:
Подготовительный
Бескислородный
Кислородный
В результате органические вещества распадаются до неорганических соединений.

У облигатных анаэробов и факультативных анаэробов при недостатке кислорода катаболизм протекает в два первых этапа:
Подготовительный
Бескислородный

ЭТАПЫ КАТАБОЛИЗМА Первый этап — подготовительный — заключается в ферментативном расщеплении сложных органических соединений на более простые

ЭТАПЫ КАТАБОЛИЗМА Первый этап — подготовительный — заключается в ферментативном расщеплении сложных органических соединений на более простые

ЭТАПЫ КАТАБОЛИЗМА

Первый этап — подготовительный — заключается в ферментативном расщеплении сложных органических соединений на более простые.
Белки расщепляются до аминокислот, жиры — до глицерина и жирных кислот, полисахариды — до моносахаридов, нуклеиновые кислоты — до нуклеотидов.
У многоклеточных организмов это происходит в желудочно-кишечном тракте, у одноклеточных — в лизосомах под действием гидролитических ферментов.
Высвобождающаяся при этом энергия рассеивается в виде теплоты. Образовавшиеся органические соединения либо подвергаются дальнейшему окислению, либо используются клеткой для синтеза собственных органических соединений.

Второй этап — неполное окисление (бескислородный) — заключается в дальнейшем расщеплении органических веществ, осуществляется в цитоплазме клетки без участия кислорода

Второй этап — неполное окисление (бескислородный) — заключается в дальнейшем расщеплении органических веществ, осуществляется в цитоплазме клетки без участия кислорода

Второй этап — неполное окисление (бескислородный) — заключается в дальнейшем расщеплении органических веществ, осуществляется в цитоплазме клетки без участия кислорода.
Главным источником энергии в клетке является глюкоза.
Бескислородное, неполное окисление глюкозы называется гликолизом.
В результате гликолиза одной молекулы глюкозы образуется по две молекулы пировиноградной кислоты (ПВК, пируват) C3H4O3,, АТФ и воды, а также атомы водорода, которые связываются молекулой-переносчиком НАД+ и запасаются в виде НАД· Н.

ЭТАПЫ КАТАБОЛИЗМА

НАД+ и НАД-Н НикотинамидАденинДинуклеотид (

НАД+ и НАД-Н НикотинамидАденинДинуклеотид (

НАД+ и НАД-Н

НикотинамидАденинДинуклеотид ( НАД) — кофермент, имеющийся во всех живых клетках - динуклеотид и состоит из двух нуклеотидов, соединённых своими фосфатными группами.
В метаболизме НАД задействован в окислительно-восстановительных реакциях, перенося электроны из одной реакции в другую.
В клетках НАД находится в двух функциональных состояниях: его окисленная форма, НАД+, является окислителем и забирает электроны от другой молекулы, восстанавливаясь в НАД-Н, который далее служит восстановителем и отдаёт электроны. Такие реакции, сопряжённые с переносом электронов, являются основной сферой действия НАД.

НАДФ НикотинамидАденинДинуклеотидФосфат (

НАДФ НикотинамидАденинДинуклеотидФосфат (

НАДФ

НикотинамидАденинДинуклеотидФосфат (НАДФ) — широко распространённый в природе кофермент некоторых дегидрогеназ — ферментов, катализирующих окислительно-восстановительные реакции в живых клетках.
НАДФ принимает на себя водород и электроны окисляемого соединения и передаёт их на другие вещества.
В хлоропластах растительных клеток НАДФ восстанавливается при световых реакциях фотосинтеза и затем обеспечивает водородом синтез углеводов при темновых реакциях.
НАДФ, — кофермент, отличающийся от НАД содержанием ещё одного остатка фосфорной кислоты, присоединённого к гидроксилу одного из остатков рибозы, обнаружен во всех типах клеток.

Суммарная формула гликолиза имеет следующий вид:

Суммарная формула гликолиза имеет следующий вид:

Суммарная формула гликолиза имеет следующий вид: C6H12O6 + 2H3PO4 + 2АДФ + 2НАД+ → 2C3Н4O3 + 2H2O + 2АТФ + 2НАД· Н

Далее при отсутствии в среде кислорода продукты гликолиза (ПВК и НАД· Н) перерабатываются либо в этиловый спирт — спиртовое брожение (в клетках дрожжей и растений при недостатке кислорода) CH3COCOOH → СО2 + СН3СОН (уксусный альдегид) СН3СОН + 2НАД· Н → С2Н5ОН (этанол) + 2НАД+, либо в молочную кислоту — молочнокислое брожение (в клетках животных при недостатке кислорода) CH3COCOOH + 2НАД·Н → C3Н6O3 + 2НАД+. При наличии в среде кислорода продукты гликолиза претерпевают дальнейшее расщепление до конечных продуктов.

Третий этап — полное окисление (дыхание) — заключается в окислении

Третий этап — полное окисление (дыхание) — заключается в окислении

Третий этап — полное окисление (дыхание) — заключается в окислении ПВК до углекислого газа и воды, осуществляется в митохондриях при обязательном участии кислорода.
Он состоит из трёх стадий: А.образование ацетилкоэнзима А; Б. окисление ацетилкоэнзима А в цикле Кребса; В. окислительное фосфорилирование в электронотранспортной цепи.


ЭТАПЫ КАТАБОЛИЗМА

А. На первой стадии ПВК переносится из цитоплазмы в митохондрии, где взаимодействует с ферментами матрикса и образует: диоксид углерода, который выводится из клетки; атомы водорода,…

А. На первой стадии ПВК переносится из цитоплазмы в митохондрии, где взаимодействует с ферментами матрикса и образует: диоксид углерода, который выводится из клетки; атомы водорода,…

А. На первой стадии ПВК переносится из цитоплазмы в митохондрии, где взаимодействует с ферментами матрикса и образует:
диоксид углерода, который выводится из клетки;
атомы водорода, которые молекулами-переносчиками доставляются к внутренней мембране митохондрии;
ацетилкофермент А (ацетил-КоА)
Б. На второй стадии происходит окисление ацетилкоэнзима А в цикле Кребса.
Цикл Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты) — это цепь последовательных реакций, в ходе которых из одной молекулы ацетил-КоА образуются :
две молекулы диоксида углерода,
молекула АТФ
четыре пары атомов водорода, передаваемые на молекулы-переносчики — НАД и ФАД (ФлавинАденинДинуклеотид)
Таким образом, в результате гликолиза и цикла Кребса молекула глюкозы расщепляется до СО2, а высвободившаяся при этом энергия расходуется на синтез 4 АТФ и накапливается в 10 НАД· Н и 4 ФАД· Н2.

В. На третьей стадии атомы водорода с

В. На третьей стадии атомы водорода с

В. На третьей стадии атомы водорода с НАД· Н и ФАД· Н2 окисляются молекулярным кислородом О2 с образованием воды.
Один НАД· Н способен образовывать 3 АТФ, а один ФАД· Н2– 2 АТФ. Таким образом, выделяющаяся при этом энергия запасается в виде ещё 34 АТФ.
Этот процесс протекает следующим образом:
Атомы водорода концентрируются около наружной стороны внутренней мембраны митохондрии
Они теряют электроны, которые по цепи молекул-переносчиков (цитохромов) электронотранспортной цепи (ЭТЦ) переносятся на внутреннюю сторону внутренней мембраны, где соединяются с молекулами кислорода: О2 + е- → О2-.

В результате деятельности ферментов цепи переноса электронов внутренняя мембрана митохондрий изнутри заряжается отрицательно (за счёт

В результате деятельности ферментов цепи переноса электронов внутренняя мембрана митохондрий изнутри заряжается отрицательно (за счёт

В результате деятельности ферментов цепи переноса электронов внутренняя мембрана митохондрий изнутри заряжается отрицательно (за счёт О2-), а снаружи — положительно (за счёт Н+), так что между её поверхностями создаётся разность потенциалов.
Во внутреннюю мембрану митохондрий встроены молекулы фермента АТФ- синтетазы, обладающие ионным каналом. Когда разность потенциалов на мембране достигает критического уровня, положительно заряженные частицы H+ силой электрического поля начинают проталкиваться через канал АТФазы и, оказавшись на внутренней поверхности мембраны, взаимодействуют с кислородом, образуя воду: 1/2О2- +2H+ → Н2О.

Энергия ионов водорода H+, транспортирующихся через ионный канал внутренней мембраны митохондрии, используется для фосфорилирования

Энергия ионов водорода H+, транспортирующихся через ионный канал внутренней мембраны митохондрии, используется для фосфорилирования

Энергия ионов водорода H+, транспортирующихся через ионный канал внутренней мембраны митохондрии, используется для фосфорилирования АДФ в АТФ: АДФ + Ф → АТФ.
Такое образование АТФ в митохондриях при участии кислорода называется окислительным фосфорилированием.

Суммарное уравнение расщепления глюкозы в процессе клеточного дыхания: C6H12O6 + 6O2 + 38H3PO4 + 38АДФ → 6CO2 + 44H2O + 38АТФ.
Таким образом,
в ходе гликолиза образуются 2 молекулы АТФ,
в ходе клеточного дыхания — ещё 36 молекул АТФ,
в целом при полном окислении глюкозы — 38 молекул АТФ.

Презентация Метаболизм. Фотосинтез. Теория ЕГЭ

Презентация Метаболизм. Фотосинтез. Теория ЕГЭ

ПЛАСТИЧЕСКИЙ ОБМЕН Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи

ПЛАСТИЧЕСКИЙ ОБМЕН Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи

ПЛАСТИЧЕСКИЙ ОБМЕН

Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул: органические вещества пищи (белки, жиры, углеводы) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).
Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе фото- и хемосинтеза происходит образование простых органических соединений, из которых в дальнейшем синтезируются макромолекулы: неорганические вещества (СО2, Н2О) → простые органические молекулы (аминокислоты, жирные кислоты, моносахариды) → макромолекулы тела (белки, жиры, углеводы).

Фотосинтез — важнейший процесс, лежащий в основе возникновения и существования подавляющего большинства организмов на

Фотосинтез — важнейший процесс, лежащий в основе возникновения и существования подавляющего большинства организмов на

Фотосинтез — важнейший процесс, лежащий в основе возникновения и существования подавляющего большинства организмов на Земле.
Фотосинтез — это процесс образования органических соединений из диоксида углерода (CO2) и воды (H2O) с использованием энергии света.

ФОТОСИНТЕЗ

К. А. Тимирязев (1843–1920) назвал роль фотосинтеза «космической», поскольку он связывает Землю с Солнцем (космосом), обеспечивая приток энергии на планету.

Фотосинтез может осуществляться только с помощью определенных веществ — пигментов

Фотосинтез может осуществляться только с помощью определенных веществ — пигментов


Фотосинтез может осуществляться только с помощью определенных веществ — пигментов.
Фотосинтетические пигменты высших растений делятся на две группы: хлорофиллы и каротиноиды.
Хлорофилл локализован в мембранах тилакоидов хлоропластов. В хлоропласте содержится около 400 молекул хлорофилла.
Хлоропласты обычно располагаются в клетке так, чтобы их мембраны находились под прямым углом к источнику света, что гарантирует максимальное поглощение света (они могут перемещаться в клетке, в зависимости от того, как падает свет).

Презентация Метаболизм. Фотосинтез. Теория ЕГЭ

Презентация Метаболизм. Фотосинтез. Теория ЕГЭ

Строение молекул хлорофилла и гемоглобина

Строение молекул хлорофилла и гемоглобина

Строение молекул хлорофилла и гемоглобина

ФОТОСИНТЕЗ Образование богатых энергией органических веществ из бедных энергией неорганических веществ за счёт энергии солнечного света

ФОТОСИНТЕЗ Образование богатых энергией органических веществ из бедных энергией неорганических веществ за счёт энергии солнечного света

ФОТОСИНТЕЗ

Образование богатых энергией органических веществ из бедных энергией неорганических веществ за счёт энергии солнечного света.
Суммарное уравнение:
6СО2+6Н2О + энергия света = С6Н12О6 + 6Н2О
Происходит в клетках растений (хлоропласты) и некоторых бактерий (цианобактерии)
При участии хлорофилла – органическое вещество, зелёный пигмент.
Проходит в две фазы – световую и темновую.

Световая фаза фотосинтеза растений включает в себя нециклическое фосфорилирование и фотолиз воды

Световая фаза фотосинтеза растений включает в себя нециклическое фосфорилирование и фотолиз воды

Световая фаза фотосинтеза растений включает в себя нециклическое фосфорилирование и фотолиз воды.   
На фотосинтетических мембранах гран хлоропластов происходят следующие процессы:
возбуждение электронов хлорофилла квантами света и их переход на более высокий энергетический уровень;
восстановление акцепторов электронов — НАДФ+ до НАДФ⋅Н2;
фотолиз воды, происходящий при участии квантов света:
          2H2O4H++4e−+O2

Результатами световых реакций являются:
фотолиз воды с образованием свободного кислорода;
синтез АТФ;
восстановление НАДФ+ до НАДФ⋅Н.

СВЕТОВАЯ ФАЗА (ТОЛЬКО НА СВЕТУ)

СВЕТОВАЯ ФАЗА (ТОЛЬКО НА СВЕТУ)

СВЕТОВАЯ ФАЗА (ТОЛЬКО НА СВЕТУ)

Где: в тилакоидах хлороплстов
Последовательность процессов:
Электроны хлорофилла поглощают свет, приобретают избыток энергии (возбуждается, переходят на более высокий энергетический уровень) и покидает молекулу хлорофилла (выходят на мембрану)
Хлорофилл отнимает электроны от воды, происходит фотолиз воды – распад её на протоны, электроны и атомы кислорода.
Электроны движутся по ЭТЦ (электрон-транспортной цепи) внутренней мембраны, при этом выделяется энергия, которая затрачивается на синтез АТФ.
Протоны соединяются с электронами, «выбитыми» из хлорофилла с образованием атомарного водорода в виде НАДФ-Н2
Из атомов кислорода образуется молекулярный кислород
Итог: под действием света образуются:
О2 – выделяется в атмосферу (побочный продукт)
АТФ-источник энергии для синтеза глюкозы (преобразованная энергия света)
НАДФ-Н2 – источник водорода (от воды) для восстановления СО2



ТЕМНОВАЯ ФАЗА (И НА СВЕТУ, И В

ТЕМНОВАЯ ФАЗА (И НА СВЕТУ, И В

ТЕМНОВАЯ ФАЗА (И НА СВЕТУ, И В ТЕМНОТЕ)

Где: в строме хлоропласта (матриксе)
Последовательность процессов:
Фиксация углекислого газа (присоединение СО2 к пентозе) и восстановление полученных веществ с участием НАДФН2 и АТФ.
Синтез глюкозы из полученных продуктов.
Итог: синтез глюкозы за счёт восстановления СО2 водородом, который образовался в световую фазу при расщеплении молекулы воды (фотолоизе), с использованием энергии АТФ, запасённой в световую фазу.

Презентация Метаболизм. Фотосинтез. Теория ЕГЭ

Презентация Метаболизм. Фотосинтез. Теория ЕГЭ

Значение фотосинтеза для окружающего мира

Значение фотосинтеза для окружающего мира

Значение фотосинтеза для окружающего мира
Рост растений
Избыток глюкозы запасается в виде крахмала. Именно в виде этих органических веществ растение накапливает энергию. Только небольшая их часть остается в листе и используется для его нужд. Остальные же углеводы путешествуют по ситовидным трубкам флоэмы по всему растению и поступают именно туда, где больше всего нужна энергия, например, в точки роста.
Источник органики
Фотосинтез является основным источником органического вещества на Земле, то есть обеспечивает живые организмы питанием и, как следствие, энергией. Часть органики, накопленная с помощью фотосинтеза, будет участвовать в процессе нефтеобразования.
Источник кислорода и озона
Фотосинтез служит источником кислорода, составляющего 20 % атмосферы Земли. Весь атмосферный кислород образовался в результате фотосинтеза. Из кислорода в верхних слоях атмосферы образуется озон, который защищает всё живое на Земле от губительного действия УФ-лучей.

Что влияет на скорость фотосинтеза?

Что влияет на скорость фотосинтеза?

Что влияет на скорость фотосинтеза?
Скорость фотосинтеза неодинакова и меняется в зависимости от условий окружающей среды
Длина волны
Наиболее интенсивно процесс протекает под действием волн сине- фиолетовой и красной частей спектра. Также зависит от степени освещенности. До определённого значения изменения прямо пропорциональны, далее зависимость от интенсивности света теряется.
Вода
Важнейший фактор, переоценить значение которого трудно из-за участия воды во многих других процессах.
Температура
Все реакции фотосинтеза катализируются ферментами, для которых оптимальная температура составляет 25-30 градусов по Цельсию.
Углекислый газ
Чем выше концентрация углекислого газа, тем интенсивнее идёт процесс фотосинтеза. Обычно недостаток CO2 - главный ограничивающий фактор. (В теплице скорость фотосинтеза выше)

СРАВНЕНИЕ СВЕТОВОЙ И ТЕМНОВОЙ ФАЗ

СРАВНЕНИЕ СВЕТОВОЙ И ТЕМНОВОЙ ФАЗ

СРАВНЕНИЕ СВЕТОВОЙ И ТЕМНОВОЙ ФАЗ ФОТОСИНТЕЗА

  Критерии сравнения

  Световая фаза

Темная фаза  

Солнечный свет

  Обязателен

  Необязателен

Место протекание реакций

  Граны хлоропласта

  Строма (матрикс) хлоропласта

Зависимость от источника энергии

Зависит от солнечного света

  Зависит от АТФ и НАДФ•Н2, образованных в световой фазе и от количества СО2 из атмосферы

Исходные вещества

Хлорофилл, белки-переносчики электронов,
АТФ-синтетаза

  Углекислый газ

Суть фазы
(что образуется)

  Выделяется свободный О2, образуется АТФ и НАДФ•Н2

  Образование природного сахара (глюкозы) и поглощение СО2 из атмосферы

Презентация Метаболизм. Фотосинтез. Теория ЕГЭ

Презентация Метаболизм. Фотосинтез. Теория ЕГЭ

Цикл Кальвина (темновая фаза)

Цикл Кальвина (темновая фаза)

Цикл Кальвина (темновая фаза)

Презентация Метаболизм. Фотосинтез. Теория ЕГЭ

Презентация Метаболизм. Фотосинтез. Теория ЕГЭ

ХЕМОСИНТЕЗ

ХЕМОСИНТЕЗ

ХЕМОСИНТЕЗ

Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
12.03.2021