Проверочная работа по теме «Преобразование выражений». Математика 7-8 класс.
Оценка 4.8

Проверочная работа по теме «Преобразование выражений». Математика 7-8 класс.

Оценка 4.8
doc
17.01.2021
Проверочная работа  по теме «Преобразование выражений». Математика 7-8 класс.
7 тесты.doc

Проверочная работа  по теме «Преобразование выражений»

Вариант 1

 

• 1. Найдите значение выражения 6x - 8y, при x = , у = .

• 2. Сравните значения выражений -0,8x - 1 и 0,8x - 1 при x = 6.

• 3. Упростите выражение:

а) 2x - Зy - 11х + 8у; б) 5(2а + 1) - 3; в) 14x - (x - 1) + (2х + 6).

4. Упростите выражение и найдите его значение:

-4 (2,5а - 1,5) + 5,5а – 8, при а = - .

5. Из двух городов, расстояние между которыми s км, одновременно навстречу друг другу выехали легковой автомобиль и грузовик и встретились через t ч. Скорость легкового автомобиля v км/ч. Найдите скорость грузовика. Ответьте на вопрос задачи, еcли s = 200, t = 2, v = 60.

6. Раскройте скобки: Зx - (5x - (3x - 1)).

 

 

 

Проверочная работа   по теме «Преобразование выражений»

Вариант 2

 

• 1. Найдите значение выражения 16а + 2y, при а =  , у = - .

• 2. Сравните значения выражений 2 + 0,3а и 2 - 0,3а, при  а = - 9.

• 3. Упростите выражение:

а) 5а + 7b - 2а - 8b; б) 3 (4x + 2) - 5; в) 20b - (b - 3) + (Зb - 10).

4. Упростите выражение и найдите его значение:

-6 (0,5x - 1,5) - 4,5x – 8, при x = .

5. Из двух городов одновременно навстречу друг другу выехали автомобиль и мотоцикл и встретились через t ч. Найдите расстояние между городами, если скорость автомобиля v1 км/ч, а скорость мотоцикла v2 км/ч. Ответьте на вопрос задачи, если: t = 3, v1 = 80, v2 = 60.

6. Раскройте скобки: 2р - (3р - (2р - с)).


 

Проверочная работа «Уравнения с одной переменной»

Вариант 1

• 1. Решите уравнение:

а) x = 12;

б) 6x - 10,2 = 0;

в) 5x - 4,5 = 3x + 2,5;

г) 2x - (6x - 5) = 45.

• 2. Таня в школу сначала едет на автобусе, а потом идет пешком. Вся дорога у нее занимает 26 мин. Идет она на 6 мин дольше, чем едет на автобусе. Сколько минут она едет на автобусе?

3. В двух сараях сложено сено, причем в первом сарае сена в 3 раза больше, чем во втором. После того как из первого сарая увезли 20 т сена, а во второй привезли 10 т, в обоих сараях сена стало поровну. Сколько всего тонн сена было в двух сараях первоначально?

4. Решите уравнение 7х - (х + 3) = 3 (2х - 1).

 

 

Проверочная работа «Уравнения с одной переменной»

Вариант 2

• 1. Решите уравнение:

а) х = 18;

б) 7x + 11,9 = 0;

в) 6х - 0,8 = 3х + 2,2;

г) 5х - (7х + 7) = 9.

• 2. Часть пути в 600 км турист пролетел на самолете, а часть проехал на автобусе. На самолете он проделал путь, в 9 раз больший, чем на автобусе. Сколько километров турист проехал на автобусе?

3. На одном участке было в 5 раз больше саженцев смородины, чем на другом. После того как с первого участка увезли 50 саженцев, а на второй посадили еще 90, на обоих участках саженцев стало поровну. Сколько всего саженцев было на двух участках первоначально?

4. Решите уравнение 6х - (2х - 5) = 2 (2х + 4).


 

Проверочная работа по теме «Линейная функция»

Вариант 1

• 1. Функция задана формулой у = 6х + 19. Определите: а) значение у, если х = 0,5; б) значение х, при котором у = 1; в) проходит ли график функции через точку А (-2; 7).

• 2. а) Постройте график функции у = 2х - 4.

б) Укажите с помощью графика, чему равно значение у, при х = 1,5.

• 3. В одной и той же системе координат постройте графики функций: а) у = -2х; б) у = 3.

4. Найдите координаты точки пересечения графиков функций у= 47х - 37 и у = -13х + 23.

5. Задайте формулой линейную функцию, график которой параллелен прямой у = 3х - 7 и проходит через начало координат.

 

 

Проверочная работа по теме «Линейная функция»

Вариант 2

• 1. Функция задана формулой у = 4х - 30. Определите:

а) значение у, если х = -2,5; б) значение х, при котором у = -6; в) проходит ли график функции через точку В (7; -3).

• 2. а) Постройте график функции у = -3х + 3.

б) Укажите с помощью графика, при каком значении х значение у равно 6.

• 3. В одной и той же системе координат постройте графики функций: а) у = 0,5х; б) у = -4.

4. Найдите координаты точки пересечения графиков функций у= -38х + 15 и у = -21х - 36.

5. Задайте формулой линейную функцию, график которой параллелен прямой у = -5х + 8 и проходит через начало координат.


 

Проверочная работа

 по теме «Степень с натуральным показателем»

Вариант 1

• 1. Найдите значение выражения 1 - 5х2, при х = -4.

• 2. Выполните действия:

а) y7 y12; б) y20 : y5; в) (y2)8; г) (2у)4.

• 3. Упростите выражение: а) -2аb3 • 3а2b4; б) (- 2а5b2)3.

• 4. Постройте график функции у = х2. С помощью графика определите значение у при х = 1,5; х = -1,5.

5. Вычислите: .

6. Упростите выражение: a) 2; б) xn – 2 x3 – n x.

 

 

Проверочная работа

 по теме «Степень с натуральным показателем»

Вариант 2

• 1. Найдите значение выражения -9р3, при р = - .

• 2. Выполните действия: а) с3 с22; б) с18 : с6; в) (с4)6; г) (3с)5.

• 3. Упростите выражение: а) -4х5у2 Зху4; б) (Зх2y3)2.

• 4. Постройте график функции у = х2. С помощью графика функции определите, при каких значениях х значение y равно 4.

5. Вычислите: .

6. Упростите выражение: a) 3; б) (an + 1 )2 : a 2n.


 

 

Проверочная работа по теме «Сумма, разность многочленов»

Вариант 1

• 1. Выполните действия: а) (За - 4ах + 2) - (11а - 14ах); б) 3у23 + 1).

• 2. Вынесите общий множитель за скобки: а) 10аb - 15b2; б) 18а3 + 6а2.

• 3. Решите уравнение 9х - 6 (х - 1) = 5 (х + 2).

• 4. Пассажирский поезд за 4 ч прошел такое же расстояние, какое товарный за 6 ч. Найдите скорость пассажирского поезда, если известно, что скорость товарного на 20 км/ч меньше.

5. Решите уравнение .

6. Упростите выражение 2а (а + b - с) – 2b (а - b - с) + 2с (а - b + с).

 

 

 

 

 

Проверочная работа по теме «Сумма, разность многочленов»

Вариант 2

• 1. Выполните действия: а) (2а2 - За + 1) - (7а2 - 5а); б) 3х (4х2 - х).

• 2. Вынесите общий множитель за скобки: а) 2ху - 3ху2; б) 8b4 + 2b3.

• 3. Решите уравнение 7 - 4 (3х - 1) = 5 (1 - 2х).

• 4. В трех шестых классах 91 ученик. В 6 «А» на 2 ученика меньше, чем в 6 «Б», а в 6 «В» на 3 ученика больше, чем в 6 «Б». Сколько учащихся в каждом классе?

5. Решите уравнение .

6. Упростите выражение 3х (х + у + с) - 3у (х - у - с) - 3с (х + у - с).


 

Проверочная работа №6 по теме «Произведение многочленов»

Вариант 1

 

• 1. Выполните умножение:

а) (с + 2) (с - 3); б) (2а - 1) (За + 4); в) (5х - 2у) (4х - у); г) (а - 2) (а2 - 3а + 6).

• 2. Разложите на множители: а) а (а + 3) - 2 (а + 3); б) ах - ау + 5х - 5у.

3. Упростите выражение -0,1x (2х2 + 6) (5 - 4х2).

4. Представьте многочлен в виде произведения:

а) х2 - ху - 4х + 4у; б) ab - ас - bх + сх + с - 6.

5. Из прямоугольного листа фанеры вырезали квадратную пластинку, для чего с одной стороны листа фанеры отрезали полосу шириной 2 см, а с другой, соседней, - 3 см. Найдите сторону получившегося квадрата, если известно, что его площадь на 51 см2 меньше площади прямоугольника.

 

 

 

 

 

Проверочная работа №6 по теме «Произведение многочленов»

Вариант 2

 

• 1. Выполните умножение:  а) (а - 5) (а - 3); б) (5х + 4) (2х - 1);

в) (3р + 2с) (2р + 4с); г) (6 - 2) (b2 + 2b - 3).

• 2. Разложите на множители: а) х (х - у) + а (х - у); б) 2а - 2b + са - сb.

3. Упростите выражение 0,5х (4х2 - 1) (5х2 + 2).

4. Представьте многочлен в виде произведения:

а) 2а - ас - 2с + с2; 6) bx + by - х - у - ах - ау.

5. Бассейн имеет прямоугольную форму. Одна из его сторон на 6 м больше другой. Он окружен дорожкой, ширина которой 0,5 м. Найдите стороны бассейна, если площадь окружающей его дорожки 15 м2.


 

Проверочная работа

по теме «Формулы сокращенного умножения»

Вариант 1

 

• 1. Преобразуйте в многочлен:

а) (у - 4)2; б) (7х + а)2; в) (5с - 1) (5с + 1); г) (3а + 2b) (3а - 2b).

• 2. Упростите выражение (а - 9)2 - (81 + 2а).

• 3. Разложите на множители: а) х2 - 49; б) 25х2 - 10ху + у2.

4. Решите уравнение (2 - х)2 - х (х + 1,5) = 4.

5. Выполните действия: а) 2 - 2а) (2а + у2); б) (3х2 + х)2; в) (2 + т)2 (2 - т)2.

6. Разложите на множители: а) 4х2y2 - 9а4; б) 25а2 - (а + 3)2; в) 27т3 + п3.

 

 

 

 

Проверочная работа

по теме «Формулы сокращенного умножения»

Вариант 2

 

• 1. Преобразуйте в многочлен:

а) (3а + 4)2; б) (2х - b)2; в) (b + 3) (b - 3); г) (5у - 2х) (5у + 2х).

• 2. Упростите выражение (с + b) (с - b) - (5с2 - b2).

• 3. Разложите на множители: а) 25у2 - а2; б) с2 + 4bс + 4b2.

4. Решите уравнение 12 - (4 - х)2 = х (3 - х).

5. Выполните действия: а) (3х + у2) (3х - у2); б) (а3 - 6а)2; в) (а - х)2 (х + а)2.

6. Разложите на множители: а) 100а4 - b2 ; б) 9х2 - (х - 1)2; в) х3 + у6.

 

 

 

 

 

Проверочная работа

по теме «Преобразование целых выражений»

Вариант 1

 

• 1. Упростите выражение:

а) (х - 3) (х - 7) - 2х (3х - 5); б) 4а (а - 2) - (а - 4)2; в) 2 (т + 1)2 - 4m.

• 2. Разложите на множители: а) х3 - 9х; б) -5а2 - 10аb - 5b2.

3. Упростите выражение (у2 - 2у)2 - у2(у + 3) (у - 3) + 2у (2у2 + 5).

4. Разложите на множители: а) 16х4 - 81; б) х2 - х - у2 - у.

5. Докажите, что выражение х2 - 4х + 9, при любых значениях х принимает положительные значения.

 

 

 

 

 

Проверочная работа

по теме «Преобразование целых выражений»

Вариант 2

 

• 1. Упростите выражение:

а) 2х (х - 3) - 3х (х + 5); б) (а + 7) (а - 1) + (а - 3)2; в) 3 (у + 5)2 - 3у2.

• 2. Разложите на множители: а) с2 - 16с; б) 3а2 - 6аb + 3b2.

3. Упростите выражение (За - а2)2 - а2 (а - 2) (а + 2) + 2а (7 + 3а2).

4. Разложите на множители: а) 81а4 - 1; б) у2 - х2 - 6х - 9.

5. Докажите, что выражение 2 + 4а - 9 может принимать лишь отрицательные значения.

 

Проверочная работа  по теме «Системы линейных уравнений»

Вариант 1

• 1. Решите систему уравнений

4х + у = 3,

6х - 2у = 1.

•2. Банк продал предпринимателю г-ну Разину 8 облигаций по 2000 р. и 3000 р. Сколько облигаций каждого номинала купил г-н Разин, если за все облигации было заплачено 19000 р.?

3. Решите систему уравнений

2 (3х + 2у) + 9 = 4х + 21,

2х + 10 = 3 - (6х + 5у).

4. Прямая у = кх + b проходит через точки А (3; 8) и В (-4; 1). Напишите уравнение этой прямой.

5. Выясните, имеет ли решение система

3x - 2y = 7,

6х - 4y = 1.

 

 

 

Проверочная работа  по теме «Системы линейных уравнений»

Вариант 2

• 1. Решите систему уравнений

3х - у = 7,

2х + 3у = 1.

• 2. Велосипедист ехал 2 ч по лесной дороге и 1 ч по шоссе, всего он проехал 40 км. Скорость его на шоссе была на 4 км/ч больше, чем скорость на лесной дороге. С какой скоростью велосипедист ехал по шоссе, и с какой по лесной дороге?

3. Решите систему уравнений

2(3х - у) - 5 = 2х - 3у,

5 - (х - 2у) = 4у + 16.

4. Прямая у = kx + b проходит через точки А (5; 0) и В (-2; 21). Напишите уравнение этой прямой.

5. Выясните, имеет ли решения система и сколько:

5х - у = 11,

-10х + 2у = -22.


 

Итоговая проверочная работа по алгебре в 7 классе

Вариант 1

 

• 1. Упростите выражение: а) 3а2b(-5а3b); б) (2х2у)3.

• 2. Решите уравнение 3х - 5 (2х + 1) = 3 (3 - 2х).

3. Разложите на множители: а) 2ху - 6y2; б) а3 - 4а.

4. Периметр треугольника ABC равен 50 см. Сторона АВ на 2 см больше стороны ВС, а сторона АС в 2 раза больше стороны ВС. Найдите стороны треугольника.

5. Докажите, что верно равенство

(а + с) (а - с) - b (- b) - (а - b + с) (а - b - с) = 0.

6. На графике функции у = 5х - 8 найдите точку, абсцисс которой противоположна ее ординате.

 

 

 

Итоговая проверочная работа по алгебре в 7 классе

Вариант 2

 

• 1. Упростите выражение: а) -2ху2 Зх3у5; б) (-4аb3)2.

• 2. Решите уравнение 4 (1 - 5х) = 9 - 3 (6x - 5).

• 3. Разложите на множители: а) а2b - аb2; б) 9х - х3.

• 4. Турист прошел 50 км за 3 дня. Во второй день он прошел на 10 км меньше, чем в первый день, и на 5 км больше, чем в третий. Сколько километров проходил турист каждый день?

5. Докажите, что при любых значениях переменных верно равенство

(х - у) (х + у) - (а - х + у) (а - х - у) - а (2х - а) = 0.

6. На графике функции у = 3х + 8 найдите точку, абсцисса которой равна ее ординате.


Проверочная работа по теме «Преобразование выражений»

Проверочная работа по теме «Преобразование выражений»

Проверочная работа «Уравнения с одной переменной»

Проверочная работа «Уравнения с одной переменной»

Проверочная работа по теме «Линейная функция»

Проверочная работа по теме «Линейная функция»

Проверочная работа по теме «Степень с натуральным показателем»

Проверочная работа по теме «Степень с натуральным показателем»

Проверочная работа по теме «Сумма, разность многочленов»

Проверочная работа по теме «Сумма, разность многочленов»

Проверочная работа №6 по теме «Произведение многочленов»

Проверочная работа №6 по теме «Произведение многочленов»

Проверочная работа по теме «Формулы сокращенного умножения»

Проверочная работа по теме «Формулы сокращенного умножения»

Проверочная работа по теме «Преобразование целых выражений»

Проверочная работа по теме «Преобразование целых выражений»

Проверочная работа по теме «Системы линейных уравнений»

Проверочная работа по теме «Системы линейных уравнений»

Итоговая проверочная работа по алгебре в 7 классе

Итоговая проверочная работа по алгебре в 7 классе
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
17.01.2021