Проверочный тест
по теме «Конус»
Яковлева Татьяна Петровна,
доцент кафедры математики и физики
Камчатского государственного университета имени Витуса Беринга,
кандидат педагогических наук, доцент,
г. Петропавловск - Камчатский
Инструкция по выполнению теста
Желаем успеха!
Прочитайте внимательно задание.
Ознакомьтесь с предложенными ответами.
Выберите, на ваш взгляд, правильный.
Выпишите букву, под которой указан выбранный вами ответ.
После прохождения всего теста, сверьте свои ответы с правильными (они выделены красным цветом).
Оцените свои возможности.
Задание №1
Конус – это…
1) тело, ограниченное поверхностью и кругами;
2) тело, ограниченное конической поверхностью и двумя
кругами;
3) тело, ограниченное конической поверхностью и кругами;
4) тело, ограниченное конической поверхностью и кругом.
Задание №2
Конус может быть получен вращением:
1) равностороннего треугольника вокруг его стороны;
2) прямоугольного треугольника вокруг одного из его
катетов;
3) прямоугольного треугольника вокруг гипотенузы;
4) тупоугольного треугольника вокруг одной из его сторон.
Задание №4
Площадь боковой поверхности конуса можно вычислить по формуле:
1) πr2;
2) πrl;
3) πrh;
4) πlh.
Задание №5
Площадь полной поверхности конуса можно вычислить по формуле:
1) 2πr(r + h);
2) 2π(r + l);
3) 2r(r + h);
4) πr(r + l).
Задание №8
Что представляет сечение конуса, проведенное плоскостью, перпендикулярно оси?
1) овал;
2) круг;
3) прямоугольник;
4) треугольник.
Задание №10
Длина образующей конуса – 10 см, диаметр его основания – 12 см. Найти высоту конуса.
1) 2 см;
2) см;
3) 16 см;
4) 8 см.
Задание №1
Конус – это…
1) тело, ограниченное поверхностью и кругами;
2) тело, ограниченное конической поверхностью и двумя
кругами;
3) тело, ограниченное конической поверхностью и кругами;
4) тело, ограниченное конической поверхностью и кругом.
Задание №2
Конус может быть получен вращением:
1) равностороннего треугольника вокруг его стороны;
2) прямоугольного треугольника вокруг одного из его
катетов;
3) прямоугольного треугольника вокруг гипотенузы;
4) тупоугольного треугольника вокруг одной из его сторон.
Задание №4
Площадь боковой поверхности конуса можно вычислить по формуле:
1) πr2;
2) πrl;
3) πrh;
4) πlh.
Задание №5
Площадь полной поверхности конуса можно вычислить по формуле:
1) 2πr(r + h);
2) 2π(r + l);
3) 2r(r + h);
4) πr(r + l).
Задание №8
Что представляет сечение конуса, проведенное плоскостью, перпендикулярно оси?
1) овал;
2) круг;
3) прямоугольник;
4) треугольник.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.