Рабочая программа для 5 классов "Решение текстовых задач"
Оценка 4.8

Рабочая программа для 5 классов "Решение текстовых задач"

Оценка 4.8
doc
14.04.2022
Рабочая программа для 5 классов "Решение текстовых задач"
Решение текстовых задач.doc

Муниципальное бюджетное общеобразовательное учреждение

города Новосибирска «Средняя общеобразовательная школа № 182

с углубленным изучением литературы и математики»

 

 

 

 

УТВЕРЖДАЮ:                     СОГЛАСОВАНО:           РАССМОТРЕНО:

Директор школы № 182          Зам.директора по УВР      на заседании МО учителей

____________________           ___________________     математики школы № 182

«___»_________2020 г.           «___» _________2020 г.   протокол № ______________

                                                                                              «___» ____________ 2020 г.       

                                                                                               Председатель МО

                                                                                              «___» ____________ 2020г.         

 

 

 

 

 

РАБОЧАЯ   ПРОГРАММА

Элективный курс по математике

«Решение текстовых задач»

5 «Б», «Г» классы

 

 

 

 

 

 

       Составитель:

       Качесова О.М.,

      Учитель математики

 

 

 

 

Новосибирск 2020г.


Структура программы

Программа содержит следующие разделы:

1.      Пояснительная записка.

2.      Общая характеристика элективного курса.

3.      Место элективного курса в учебном плане.

4.      Содержание программы элективного курса.

5.      Тематическое планирование.

6.      Календарно-тематическое планирование.

7.      Описание учебно-методического и материально-технического обеспечения образовательного процесса.

8.      Планируемые результаты изучения элективного курса.


1.     Пояснительная записка

 

Рабочая программа составлена на основе Федерального Государственного образовательного стандарта основного общего образования, ориентированная на учебник Мерзляка  и др. и направлена на обеспечение дополнительной подготовки по математике.

Данная программа курса призвана помочь учащимся развить умения и навыки в решении задач, научить грамотному подходу к решению текстовых задач. Курс содержит различные виды арифметических задач. С их помощью учащиеся получают опыт работы с величинами, постигают взаимосвязи между ними, получают опыт применения математики к решению практических задач.

Изучение данного курса актуально в связи с тем, что рассмотрение вопроса решения текстовых задач не выделено в отдельные блоки учебного материала. Решение задач встречается в разных темах, и не указываются основные общие способы их решения, как правило, не выделяются одинаковые взаимосвязи между компонентами задачи.

Арифметические способы решения текстовых задач позволяют развивать умение анализировать задачные ситуации, строить план решения с учётом взаимосвязей между известными и неизвестными величинами (с учётом типа задачи), истолковывать результат каждого действия в рамках условия задачи, проверять правильность решения с помощью обратной задачи, то есть формулировать и развивать важные общеучебные умения.

Использование алгоритмов, таблиц, рисунков, общих приемов дает возможность ликвидировать у большей части учащихся страх перед текстовой задачей, научить распознавать типы задач и правильно выбирать прием решения.

 

Обучение математике в основной школе направлено на достижение следующих целей:

в направлении  личностного развития:

     формирование представлений о математике, как части общечеловече­ской культуры, о значимости математики в раз­витии цивилизации и современ­ного общества;

     развитие логического и критического мышления, куль­туры речи, способно­сти к умствен­ному эксперименту;

     формирование интеллектуальной честности и объектив­ности, способно­сти к преодоле­нию мыслительных стереоти­пов, вытекающих из обыденного опыта;

     воспитание качеств личности, обеспечивающих соци­альную мобиль­ность, способ­ность принимать самостоятель­ные решения;

     формирование качеств мышления, необходимых для адаптации в современ­ном информа­ционном обществе;

     развитие интереса к математическому творчеству и ма­тематических способ­ностей;

в метапредметном направлении:

     развитие представлений о математике как форме опи­сания и методе позна­ния действи­тельности, создание условий для приобретения первоначаль­ного опыта математиче­ского моделирования;

     формирование общих способов интеллектуальной дея­тельности, характер­ных для мате­матики и  являющихся осно­вой познавательной куль­туры, значимой для различных сфер человеческой деятельности;

в предметном направлении:

• овладение математическими знаниями и умениями, не­обходимыми для про­долже­ния образования, изучения смеж­ных дисциплин, применения в повсе­дневной жизни;

• создание фундамента для математического развития, формирования меха­низмов мышле­ния, характерных для мате­матической деятельности.

 

2.     Общая характеристика курса

 

    Математика играет важную роль в формировании у школьников умения учиться.

Настоящая программа элективного курса по математике для 5 класса является логическим продолжением основной программы по математике для 5 класса. В ходе  освоения содержания элективного курса математики в 5 классе учащиеся получают возможность развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру. Предлагаемый курс позволяет обеспечить формирование, как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

Ценностные ориентиры содержания учебного предмета.

Исторически сложилось две стороны назначения математического образования: практическая, связанная с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности, и духовная, связанная с мышлением человека, с овладением определенным методом познания и преобразования мира математическим методом.

В школе математика служит опорным предметом для изучения смежных дисциплин.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится решать достаточно сложные задачи, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

 

Место элективного курса в учебном плане

В соответствии с учебным планом образовательного учреждения программа рассчитана на 35 часа (1 час в неделю).


3.      Содержание программы элективного курса

·       Текстовые задачи (10 часов)

Выделение трёх этапов математического моделирования при решении текстовых задач. Перевод  условия задачи на математический язык и составление математической модели. Решение задач с многозначными числами. Решение текстовых задач на зависимость между компонентами алгебраическим методом. Компоненты задачи: условие, решение, ответ. Выделение взаимосвязей данных и искомых величин в задаче. Значение правильного письменного оформления текстовой задачи. Решение задач составлением числового выражения.

·        Задачи на движение (6 часов).

Основные понятия (скорость, время, расстояние) и формулы, по которым они находятся. Задачи на “одновременное” движение. Задачи на движение в одном направлении. Задачи на движение в разных направлениях. Задачи на движение по воде (по течению и против течения).

·        Геометрические задачи (10 часов).

Площади. Задачи на разрезание. Рисование фигур на клетчатой бумаге. Разрезание фигур на равные части. Геометрия в пространстве. Компоненты задачи: дано, рисунок, решение, ответ. Значение правильного письменного оформления геометрической задачи.

·        Логические задачи и задачи математических олимпиад (6 часов).

Сюжетные логические задачи. Задачи со спичками. Задачи на сравнение.

·        Веселая математика (2 часа).


4.     Тематическое планирование

 

№ урока

Дата

Тема урока и тип урока

Кол-во часов

Элемент содержания

Планируемые результаты

УУД

1

2

3

4

 

I. Текстовые задачи

Решение задач с многозначными числами.

 

комбинированные уроки

 

4

Компоненты задачи: условие, решение, ответ. Выделение взаимосвязей данных и искомых величин в задаче. Этапы решения текстовой задачи.

Предметные:

Выполнять арифметические действия в столбик.

 

Личностные:

развитие интереса к математическому творчеству и математических способностей.

 

Метапредметные:

прослеживать связь и  формирование представлений о математике как части общечеловеческой культуры

Коммуникативные УУД

Аргументировать свою точку зрения.

 

Познавательные УУД

осуществлять сравнение, классификацию.

 

Регулятивные УУД

адекватно самостоятельно оценивать правильность выполнения действия и вносить необходимые коррективы.

5

6

7

 

Решение текстовых задач на зависимость между компонентами алгебраическим методом.

 

уроки применения знаний и умений

2

Название компонентов и результатов арифметических действий. Решение текстовых задач.

 

Предметные:

Повторение арифметических действий и известных методов решения задач.

 

Личностные:

воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения.

Метапредметные:

классифицировать; наблюдать; сравнивать,

структурировать тексты, включая умение выделять главное и второстепенное, главную идею текста.

Познавательные УУД

составлять схемы и математические модели при решении задач

осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий.

Коммуникативные УУД

отображать в речи (описание, объяснение) содержание совершаемых действий.

 

Регулятивные УУД

Навыки самоконтроля. 

 

  

8

9

10

 

Составление числовых и буквенных выражений для решения задач.

 

уроки применения знаний и умений

3

Определение компонентов, частей, составление схем решения задач. Алгоритм решения задач.

 

Предметные:

Читать и записывать числовые и буквенные выражения;

Находить значение числового выражения.

 

Личностные:

формирование качеств логического мышления.

 

Метапредметные:

прилагать волевые усилия и преодолевать трудности и препятствия на пути достижения целей.

Познавательные УУД

строить схемы и модели для решения задач.

Коммуникативные УУД

владеть устной и письменной речью.

 

Регулятивные УУД

самостоятельно выполнять действия на основе учёта выделенных учителем ориентиров.

 

 


11

12

13

14

15

16

17

18

19

20

 

II. Задачи на движение

 

уроки применения знаний и умений

10

Виды движения по суше: встречное, в одном направлении, в противоположном направлении, вдогонку. Особенности каждого вида движения. Связь трех компонентов задачи (скорость, время, расстояние) при каждом виде движения.

Виды движения по воде: по течению, против течения, в стоячей воде.

 

Предметные:

Вычислять скорость движения по течению реки, против течения реки.

Определять в чем различие: движения по шоссе и по реке. Используя формулу пути решать задачи на сближение или удаление объектов движения.

 

Личностные:

способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта.

 

Метапредметные:

формирование общих способов интеллектуальной деятельности.

Познавательные УУД

устанавливать причинно-следственные связи.

 

Коммуникативные УУД

работать в группе – устанавливать рабочие отношения.

 

Регулятивные УУД

уметь реализовывать свои знания.

21

22

23

24

25

26

 

III. Решение геометрических задач

 

уроки практикум с элементами дидактической игры

 

6

Компоненты задачи: дано, решение, ответ, рисунок. Задачи на разрезание. Рисование фигур на клетчатой бумаге. Разрезание фигур на равные части. Геометрия в пространстве.

 

Предметные:

При решении задач использовать геометрическую  модель.

 

Личностные:

формирование качеств мышления, необходимых для адаптации в современном информационном обществе.

Познавательные УУД

создавать и преобразовывать модели и схемы для решения задач.

 

Регулятивные УУД

планировать пути достижения целей.

 

 

 

 

Метапредметные:

Видеть межпредметную связь в школьном курсе.

Коммуникативные УУД

обучаться основам коммуникативной рефлексии.

 

27

28

29

30

31

32

IV. Логические задачи и задачи математических олимпиад

 

комбинированные уроки

 

6

Решение логических задач.  Задачи со спичками. Задачи на сравнение. Решение задач табличным методом.

Предметные:

комбинировать известные алгоритмы для решения занимательных и олимпиадных задач.

 

Личностные:        

формирование выраженной устойчивой учебно-познавательной мотивации и интереса к изучению математики.

 

Метапредметные:

формирование общих способов интеллектуальной деятельности.

Познавательные УУД

выделять характерные причинно-следственные связи

 

Регулятивные УУД

уметь самостоятельно контролировать своё время и управлять им

прилагать волевые усилия и преодолевать трудности и препятствия на пути достижения целей.

 

Коммуникативные УУД

строить монологическое контекстное высказывание.


33

34

V. Веселая Математика

Урок - путешествие

«По океану «Задача».

 

уроки проверки, учета и оценки знаний

2

Представление составленных и решенных задач, кроссвордов, ребусов; докладов, презентаций по вопросам курса.

 

Предметные:

осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий.

 

Метапредметные:

владеть устной и письменной речью.

 

Личностные:

развитие интереса к математическому творчеству и математических способностей.

Коммуникативные УУД

организовывать и планировать учебное сотрудничество с учителем и сверстниками.

 

Познавательные УУД

Обучать основам реализации исследовательской деятельности.

 

Регулятивные УУД

анализировать и сопоставлять свои знания.

35

Итоговый урок

1

 

 

 


7.     Описание учебно-методического

и материально-технического обеспечения образовательного процесса.

 

         Учебно-методический комплекс:

            Математика. 5 класс. Учебник для учащихся общеобразовательных организаций/ [Мерзляк и др.]. – М.:Просвещение, 2016

            Математика. 5 класс. Дидактические материалы по математике/ [М. А. Попов]. – М.: Экзамен, 2013

            Математика. 5 класс. Сборник практических задач по математике/ [Л. П. Попова]. – М.: Вако, 2012

            Математика. 5-6 класс. Внеурочные занятия/ [Т. Б. Алфимова]. – М.: Илекса, 2011

 

             

 


8.     Планируемые результаты изучения учебного предмета

 

Личностные результаты

Личностные УУД

·        ориентация в системе требований при обучении математике;

·        позитивное, эмоциональное восприятие математических объектов, рассуждений, решений задач, рассматриваемых проблем.

Ученик получит возможность для формирования:

·        выраженной устойчивой учебно-познавательной мотивации и интереса к изучению математики;

·        умение выбирать желаемый уровень математических результатов;

·        адекватной позитивной самооценки и Я-концепции.

·         

Метапредметные образовательные результаты

Регулятивные УУД

Ученик научится:

·        совместному с учителем целеполаганию в математической деятельности;

·        анализировать условие задачи;

·        действовать в соответствии с предложенным алгоритмом, составлять несложные алгоритмы вычислений и построений;

·        применять приемы самоконтроля при решении математических задач;

·        оценивать правильность выполнения действия и вносить необходимые коррективы на основе имеющихся шаблонов.

Ученик получит возможность научиться:

·        видеть различные стратегии решения задач, осознанно выбирать способ решения;

·        основам саморегуляции в математической деятельности в форме осознанного управления своим поведением и деятельностью, направленной на достижение поставленных целей.

 

Коммуникативные УУД

Ученик научится:

·        строить речевые конструкции с использованием изученной терминологии и символики, понимать смысл поставленной задачи, осуществлять перевод с естественного языка на математический и наоборот;

·        осуществлять контроль, коррекцию, оценку действий партнёра, уметь убеждать.

Ученик получит возможность научиться:

·        задавать вопросы, необходимые для организации собственной деятельности взаимодействия с другими;

·        устанавливать и сравнивать разные точки зрения, прежде чем принимать решения и делать выбор;

·        отображать в речи (описание, объяснение) содержание совершаемых действий.

 

Познавательные УУД

Ученик научится:

·        анализировать и осмысливать тексты задач, переформулировать их условия моделировать условие с помощью схем, рисунков, таблиц, реальных предметов, строить логическую цепочку рассуждений;

·        формулировать простейшие свойства изучаемых математических объектов;

·        с помощью учителя анализировать, систематизировать, классифицировать изучаемые математические объекты.

Ученик получит возможность научиться:

·        осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий.

 

Предметные образовательные результаты

Ученик научится:

·        выполнять действия с натуральными числами и обыкновенными дробями, сочетая устные и письменные приёмы вычислений;

·        решать текстовые задачи арифметическим способом.

·        использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин

·        распознавать на чертежах, рисунках, моделях и в окружающем мире линии, углы, многоугольники, треугольники, четырехугольники, многогранники;

·        распознавать развёртки куба, прямоугольного параллелепипеда,

·        определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

·        вычислять объём прямоугольного параллелепипеда

·        использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, градусной меры угла;

·        пользоваться основными единицами длины, массы, времени, скорости, площади, объёма; выражать более крупные единицы через более мелкие и наоборот

·        выполнять устно и письменно арифметические действия над числами, находить значения числовых выражений

Ученик получит возможность научиться:

·        научиться использовать приёмы, рационализирующие вычисления.

·        понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными.

·        вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

·        углубить и развить представления о пространственных геометрических фигурах;

·        применять понятие развёртки для выполнения практических расчётов.

·        вычислять площади фигур, составленных из двух или более прямоугольников.

·        понимать существо понятия алгоритма


Скачано с www.znanio.ru

Муниципальное бюджетное общеобразовательное учреждение города

Муниципальное бюджетное общеобразовательное учреждение города

Структура программы Программа содержит следующие разделы: 1

Структура программы Программа содержит следующие разделы: 1

Пояснительная записка Рабочая программа составлена на основе

Пояснительная записка Рабочая программа составлена на основе

Общая характеристика курса

Общая характеристика курса

И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и…

И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и…

Содержание программы элективного курса ·

Содержание программы элективного курса ·

Тематическое планирование № урока

Тематическое планирование № урока

Решение текстовых задач на зависимость между компонентами алгебраическим методом

Решение текстовых задач на зависимость между компонентами алгебраическим методом

II . Задачи на движение уроки применения знаний и умений 10

II . Задачи на движение уроки применения знаний и умений 10

Метапредметные: Видеть межпредметную связь в школьном курсе

Метапредметные: Видеть межпредметную связь в школьном курсе

V . Веселая Математика Урок - путешествие «По океану «Задача»

V . Веселая Математика Урок - путешествие «По океану «Задача»

Описание учебно-методического и материально-технического обеспечения образовательного процесса

Описание учебно-методического и материально-технического обеспечения образовательного процесса

Планируемые результаты изучения учебного предмета

Планируемые результаты изучения учебного предмета

Ученик получит возможность научиться: · задавать вопросы, необходимые для организации собственной деятельности взаимодействия с другими; · устанавливать и сравнивать разные точки зрения, прежде чем принимать…

Ученик получит возможность научиться: · задавать вопросы, необходимые для организации собственной деятельности взаимодействия с другими; · устанавливать и сравнивать разные точки зрения, прежде чем принимать…

Ученик получит возможность научиться: · научиться использовать приёмы, рационализирующие вычисления

Ученик получит возможность научиться: · научиться использовать приёмы, рационализирующие вычисления
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
14.04.2022