Рабочая программа курса внеурочной деятельности «Занимательная физика»

  • Документация
  • doc
  • 13.01.2020
Публикация в СМИ для учителей

Публикация в СМИ для учителей

Бесплатное участие. Свидетельство СМИ сразу.
Мгновенные 10 документов в портфолио.

Рабочая программа курса внеурочной деятельности «Занимательная физика»
Иконка файла материала физика.doc

 

 

Принята на                                                                    Утверждена

Педагогическом совете школы                                    Приказом директора школы         МБОУ «Вещевская ООШ»                                          МБОУ «Вещевская ООШ»

__________________________                                   ___________________________

«___» __________ 20___  года                                   «__»____________20____года

 

 

 

Муниципальное бюджетное общеобразовательное учреждение

«Вещевская основная общеобразовательная школа»

 

Рабочая программа курса внеурочной деятельности «Занимательная физика»

 

 

 

Учитель    Кравченко Дмитрий       Михайлович

Количество часов: всего __34_______ часа; в неделю _____1______ час.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рабочая программа кружка по физике для 6-8 классов составлена на основе Фундаментального ядра содержания общего образования и требований к результатам обучения, представленным в стандарте основного общего образования.

Программа составлена в соответствии с «Примерной программой по учебным предметам» (Физика. 7-9 классы: - М. Просвещение, 2011) с учетом распределения программного материала в учебнике физики (А.В.Перышкин, физика 8 класс, М.: Дрофа, 2013). Программа опирается на положения ФГОС основного общего образования по физике.

Она определяет содержание учебного материала, его структуру, последовательность изучения, пути формирования системы знаний, способов деятельности, развития учащихся, их социализации и воспитания.

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в общеобразовательной школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения посредством знакомства с методами научного познания окружающего мира и через самостоятельную деятельность учащихся по разрешению поставленных перед ними проблем. Рабочая программа является частью программы курса физики для основной школы.

Школьный курс физики является системообразующим для естественнонаучных предметов, изучаемых в школе. Это связано с тем, что в основе содержания курсов химии, физической географии, биологии лежат физические законы. Физика дает учащимся научный метод познания и позволяет получать объективные знания об окружающем мире.

Гуманитарное значение программы как составной части общего образования заключается в том, что на ее основе учащимся предоставляется возможность получения научными методами познания объективных знаний об окружающем мире.

Программа кружка расширяет возможности для развития исследовательских и экспериментаторских навыков в ходе работы над экспериментальными заданиями при реализации краткосрочных проектов.

Изучение курса кружка по физике  по данной программе направлено на достижение следующих целей:

·         Формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира;

·         Систематизация знаний о многообразии объектов и явлений природы, о закономерностях процессов и о законах физики для создания разумного использования достижений науки в дальнейшем развитии цивилизации;

·         Формирование убежденности в возможности познания окружающего мира и достоверности методов его изучения;

·         Организация экологического мышления и ценностного отношения к природе

Развитие познавательного интереса и творческих способностей учащихся для достижения целей при реализации программы ставятся следующие задачи:

·         Создать теоретическую и практическую основу для понимания тепловых, электромагнитных, оптических явлений;

·         Использовать достижения современных педагогических технологий обучения, разнообразие форм и методов обучения для привития учащимся интереса в изучении физики;

·         Использовать возможности дополнительного образования для расширения представлений учащихся об окружающей их природе

Для достижения поставленных целей обучающимся необходимо овладение методом научного познания и методами исследования явлений природы, знания о механических, тепловых, электромагнитных, квантовых явлениях, физических величинах, характеризующих эти явления. Рабочая программа кружка предусматривает необходимость формирования у обучающихся наблюдать физические явления и проводить экспериментальные исследования с использованием измерительных приборов. В процессе изучения усваиваются такие общенаучные понятия, как природное явление, эмпирически установленный факт, гипотеза, теоретический вывод, результат экспериментальной проверки, понимание ценности науки для удовлетворения потребностей человека.

В основе отбора содержания учебного материала по программе лежат принципы системности, научности, доступности; преемственности между различными разделами курса. Планирование программного материала осуществлено с учетом знаний, умений и навыков по предмету, которые сформированы у обучающихся в процессе реализации принципов развивающего обучения.

Соблюдается преемственность с курсом физики 7 и 9 классов класса. Последовательность тем программного материала сочетается с последовательностью изложения программного материала по физике. Экспериментальные задания подобраны в соответствии с экспериментальными заданиями по темам курса.

Программа кружка подкрепляются демонстрационным экспериментом и решением исследовательских, проектных и экспериментальных задач.

На первый план выдвигается раскрытие и использование познавательных возможностей обучающихся, как средства их развития и как основы для овладения учебным материалом. Повышение интенсивности и плотности процесса обучения реализуется за счет использования различных форм работы на занятиях (как под руководством учителя, так и самостоятельной работы). Снижение утомляемости обучающихся в процессе работы в кружке обеспечивается сочетанием коллективной работы с индивидуальной и групповой.

Последовательность тем программного материала выстроена с учетом возрастных особенностей и возможностей учащихся, ориентирована на соответствие с изложением программного материала по физике.

При реализации программы кружка  в учебном процессе предпочтение отдается:

·         использованию в учебном процессе здоровьесберегающих, проектных, информационных технологий, развивающему обучению, обучению в сотрудничестве, проблемному обучению;

·         комбинированным занятиям с использованием практического, проектного, исследовательского, игрового, видео-методов обучения. Большое внимание уделяется экспериментальным заданиям, лабораторным и практическим работам

Обязательные результаты изучения программы отражены в требованиях к знаниям и умениям учащихся. Предполагаемый результат достигается в реализации системно-деятельностного, лично-ориентированного, компетентностного подходов; освоении учащимися интеллектуальной и практической деятельности; овладении знаниями и умениями, необходимыми в повседневной жизни для сохранения собственного здоровья, для ориентирования в окружающем мире, для сохранения окружающей среды.

 

Рабочая программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе основного общего образования являются:

Выработка компетенций:

  • Общеобразовательных, знаниево-предметных (учебно-познавательная и информационная компетенция)
  • самостоятельно и мотивированно организовывать свою познавательную деятельность (от постановки цели до получения и оценки результата);
  • использовать элементы причинно-следственного и структурно-функционального анализа, определять сущностные характеристики изучаемого объекта, развёрнуто обосновывать суждения, давать определения, приводить доказательства;
  • использовать мультимедийные ресурсы и компьютерные технологии для обработки, передачи, математизации информации, презентации результатов познавательной и практической деятельности;
  • оценивать и корректировать своё поведение в окружающей среде, выполнять экологические требования в практической деятельности и повседневной жизни.

Достижение личностных результатов обучения физике в основной школе являются:

  • сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
  • убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
  • самостоятельность в приобретении новых знаний и практических умений;
  • готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
  • мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
  • формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе должны стать:

  • овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
  • понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
  • формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
  • приобретение опыта самостоятельного поиска, анализа и отбора информации (с использованием различных источников и новых информационных технологий для решения познавательных задач);
  • развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
  • освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
  • формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Предметными результатами обучения физике в основной школе должны стать:

  • знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
  • умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
  • умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
  • умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
  • формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
  • развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
  • коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации

 

Обучающиеся должны научиться:

  • Объяснять свойства газов, жидкостей и твердых тел на основе атомной теории строения вещества;
  • Исследовать зависимость объема газа от давления при постоянной температуре;
  • Наблюдать процесс образования кристаллов;
  • Наблюдать изменение внутренней энергии тела при теплопередаче и работе внешних сил;
  • Исследовать явление теплообмена при смешивании холодной и горячей воды;
  • Вычислять количество теплоты и удельную теплоемкость вещества при теплопередаче;
  • Измерять удельную теплоемкость вещества;
  • Измерять теплоту плавления льда;
  • Исследовать тепловые свойства парафина;
  • Наблюдать изменения внутренней энергии воды в результате испарения;
  • Вычислять количество теплоты в процессах теплопередачи при плавлении и кристаллизации, испарении и конденсации;
  • Вычислять удельную теплоту плавления и парообразования вещества;
  • Измерять влажность воздуха по точке росы;
  • Обсуждать экологические последствия применения двигателей внутреннего сгорания, тепловых и гидроэлектростанций;
  • Наблюдать явление электризации тел при соприкосновении;
  • Объяснять явления электризации тел и взаимодействия электрических зарядов;
  • Исследовать действия электрического поля на тела из проводников и диэлектриков;
  • Собирать и испытывать электрическую цепь;
  • Изготавливать и испытывать гальванический элемент;
  • Измерять силу тока в электрической цепи;
  • Измерять напряжение на участке цепи;
  • Измерять электрическое сопротивление;
  • Исследовать зависимость силы тока в проводнике от напряжения на его концах;
  • Измерять работу и мощность электрического тока;
  • Вычислять силу тока в цепи, работу и мощность электрического тока;
  • Объяснять явления нагревания проводников электрическим током;
  • Знать и выполнять правила безопасности при работе с источниками электрического тока;
  • Экспериментально изучать явление отражения света;
  • Исследовать свойства изображения в плоском зеркале;
  • Измерять фокусное расстояние собирающей линзы;
  • Получать изображение с помощью собирающей линзы

Содержание тем учебной программы.

С учетом насыщенности программного материала примерной программы по физике, требований стандартов к знаниям и умениям учащихся по вышеуказанным темам, содержание учебного материала и методика его подачи предполагают перемещение центра тяжести в учебном процессе на практические, исследовательские занятия, познавательную и творческую деятельность учащихся.

При организации занятий для выполнения программы с учетом учебно-тематического планирования предполагается проведение традиционных уроков с использованием объяснительно-иллюстративного, видео метода, практического, исследовательского, проектного, игрового методов обучения; комбинированных уроков, частью которых является лабораторная работа или практическое исследование; уроков, полностью посвященных практическим занятиям (лабораторная работа, решение задач); уроков контроля знаний. Освоение программы предполагает выполнение внеурочных домашних заданий.

С целью формирования ответственности у учащихся за качество осваиваемого программного материала, дисциплинированности в отношении к учебному процессу возможны фронтальный, персональный, текущий, тематический, административный, итоговый контроль, взаимоконтроль, самоконтроль. Контроль может осуществляться в виде самостоятельных работ, физических диктантов, контрольных тестов, контрольных работ, дифференцированных заданий по карточкам, защиты проектов, в игровой форме (с использованием за основу любой из интеллектуальных игр).

Содержание учебного материала разбито на пять основных разделов:

  • «Тепловые явления» (из раздела «Молекулярная физика» и «Термодинамика»);
  • «Изменение агрегатных состояний вещества» (из раздела «Молекулярная физика» и «Термодинамика»);
  • «Электрические явления» (из раздела «Электростатика» и «Электродинамика»);
  • «Электродинамика» (из раздела «Электродинамика» и «Колебания и волны»);
  • «Световые явления» (из раздела «Оптика»).

Раздел «Тепловые явления» включает в себя сведения о строении вещества, тепловом движении молекул. Вводятся понятия температура вещества, внутренняя энергия. Рассматриваются способы изменения внутренней энергии: теплопередача и работа; разъясняется принципиальное различие способов теплопередачи: теплопроводности, конвекции, излучения и их проявления в природе и технике. Совершенствуются представления о значении табличных данных в физике. Вводится понятие удельная теплоемкость, удельная теплота плавления вещества, удельная теплота сгорания топлива. Рассматриваются практические вопросы, связанные с передачей энергии от одних тел к другим. Обращается внимание на фундаментальность законов сохранения в природе: сохранение и превращение энергии в механических и тепловых процессах.

Раздел «Изменение агрегатных состояний вещества» содержит информацию о процессах превращения агрегатных состояний веществ (плавление и кристаллизация, испарение и конденсация) на основе молекулярно-кинетической теории строения вещества. В программном материале разъясняется смысл процесса кипения, вводится понятие температуры кипения, зависимость температуры кипения от давления; относительная влажность воздуха и ее практическое определение; преобразование энергии в тепловых машинах (паровой турбине, двигателе внутреннего сгорания, реактивных двигателях). В ознакомительном плане обсуждаются экологические проблемы использования тепловых машин.

Для реализации целей и задач программы проводятся и демонстрируются простые физические опыты и экспериментальные исследования по выявлению зависимостей: температуры остывающей воды от времени, температуры вещества от времени при изменении агрегатных состояний вещества. Объясняется устройство и принцип действия физических приборов и технических объектов: термометра, психрометра, паровой турбины, двигателя внутреннего сгорания, холодильника. Отмечается практическое применение физических знаний для учета теплопроводности и теплоемкости различных веществ.

Тема «Электрические явления» содержит объемный материал, который предлагается осваивать учащимся с содержательной стороны и с позиций практической и исследовательской направленности. Вводятся понятия электрический заряд, два вида электрических зарядов; взаимодействие зарядов. Из законов электростатики: закон Кулона и закон сохранения электрического заряда. Сложным является вопрос о механизме передачи взаимодействий посредством электрического поля. Характеристики электрического поля: напряженность, напряжение, силовые линии напряженности. Проводники и диэлектрики в электростатическом поле. Конденсатор, энергия электрического поля конденсатора. Вводится понятие постоянный электрический ток, рассматриваются действия электрического тока, условия его существования, основные элементы электрических цепей. В ознакомительном плане рассматривается вопрос о носителях электрических зарядов в металлах, полупроводниках, электролитах, газах. Сила тока, напряжение, сопротивление – понятия, которые вводятся на практических занятиях по измерению амперметром и вольтметром соответствующих параметров. Изучается последовательное и параллельное соединение проводников, закон Ома для участка цепи. Работа и мощность электрического тока, закон Джоуля-Ленца рассматриваются в связи с использованием теплового действия тока в лампах накаливания и других электрических приборах. По программе предполагается освоение терминов: плавкие предохранители, короткое замыкание.

Рассматривается экономический вопрос расхода электрической энергии и стоимости электроэнергии; практическое применение физических знаний для безопасного обращения с электробытовыми приборами; предупреждение опасного воздействия на организм человека электрического тока и электромагнитных излучений.

В разделе «Электромагнитные явления» основные вопросы для изучения магнитные действия, магнитное поле, опыт Эрстеда, постоянные магниты, переменное магнитное поле, явление электромагнитной индукции, опыты Фарадея, переменный ток. Описываются процессы, происходящие в электрическом колебательном контуре; электромагнитные колебания, процесс возникновения и распространения электромагнитных волн, принципы радиосвязи и телевидения. В ознакомительном плане рассматривается вопрос о магнитном поле Земли, действии и использовании электромагнитов, электродвигателей, электрогенераторов, трансформаторов, передаче электрической энергии на расстояние. 

Раздел «Световые явления» неразрывно связан с вопросом об электромагнитных волнах. Большая часть – вопросы из разделов геометрической и волновой оптики. Основные понятия и законы геометрической оптики: источники света, прямолинейность распространения света, отражение и преломление света, закон отражения света, плоское зеркало, закон преломления света, линзы, фокусное расстояние линз, глаз как оптическая система, оптические приборы. Явление дисперсии и дисперсии света. Из раздела волновой оптики в ознакомительном плане обсуждается электромагнитная природа света и влияние электромагнитных излучений на живые организмы.

С целью реализации программного материала объясняется устройство и принцип действия физических приборов и технических объектов: амперметра, вольтметра, динамика, микрофона, электродвигателя, очков, фотоаппарата, проекционного аппарата.

Календарно-тематическое планирование

кружка по физике 

на 2019-2020 учебный год

№ урока

Тема урока

Дата

Дата при корректировке

Дата по факту

1

 

Наблюдения и опыты. Физические величины. Измерение физических величин

 

 

 

 

Тепловые явления

 

 

 

2

Практическая работа №1 по определению количества теплоты, которое тело передает в процессе теплопередачи.

 

 

 

3

Практическая работа по определению массы тела, которое участвует в теплообмене

 

 

 

4

Практическая работа № 3 «Измерение удельной теплоемкости твердого тела».

 

 

 

 

Изменение агрегатных состояний вещества

 

 

 

5

Агрегатные состояния вещества. Плавление и кристаллизация кристаллических тел на основе МКТ.

 

 

 

6

Решение практических задач по теме «Плавление и кристаллизация кристаллических тел». Практическая работа № 4 «Определение относительной влажности воздуха с помощью гигрометра»

 

 

 

 

Электрические явления

 

 

 

7

Строение вещества. Электрический заряд. Два вида электрических зарядов. Взаимодействие электрических зарядов.

 

 

 

8

Проводники и диэлектрики в электростатическом поле. Конденсатор. Энергия электрического поля конденсатора

 

 

 

9

Электрические цепи и их составляющие.

 

 

 

10

Сила тока. Амперметр. Практическая работа № 5 «Сборка электрической цепи и измерение силы тока в ее различных участках»

 

 

 

11

Напряжение. Вольтметр. Практическая №6 «Измерение напряжения на различных участках электрической цепи».

 

 

 

12

Электрическое сопротивление. Практическая работа № 7 «Исследование зависимости силы тока в проводнике от напряжения на его концах при постоянном сопротивлении»

 

 

 

13

Практическая работа № 8 «Изучение зависимости электрического сопротивления проводника от его геометрических параметров и характера вещества, из которого он изготовлен»

 

 

 

14

Практическая работа № 9 «Исследование зависимости силы тока в электрической цепи от сопротивления при постоянном напряжении. Регулирование силы тока реостатом». Закон Ома для участка электрической цепи.

 

 

 

15

Практическая работа № 10 «Изучение последовательного соединения проводников»

 

 

 

16

Практическая работа № 11 «Изучение параллельного соединения проводников»

 

 

 

17

Практическая работа №12 «Измерение работы и мощности электрического тока»

 

 

 

18

Урок-практикум. Защита проектов по теме «Работа со смешанными соединениями в цепях постоянного тока»

 

 

 

 

Электромагнитные явления

 

 

 

19

Постоянные магниты. Практическая работа № 13 «Изучение взаимодействия постоянных магнитов»

 

 

 

20

Действие магнитного поля на проводник с током. Практическая работа № 14 «Исследование магнитного поля прямого проводника и катушки с током»

 

 

 

21

Переменное магнитное поле. Явление электромагнитной индукции. Опыты Фарадея.

 

 

 

22

Практическая работа № 15 «Сборка электромагнита и испытание его действия»

 

 

 

23

Практическая работа № 16 Изучение двигателя постоянного тока (на модели)»

 

 

 

24

Урок-практикум. Защита проектов по теме «Электромагниты и их применение»

 

 

 

 

Световые явления

 

 

 

25

Практическая работа № 17 «Исследование зависимости угла отражения от угла падения света». Закон отражения.

 

 

 

26

Практическая работа № 18 «Исследование свойств изображения в плоском зеркале»

 

 

 

27

Практическая работа № 19 «Исследование угла преломления от угла падения света»

 

 

 

28

Практическая работа № 20 «Получение изображений с помощью линзы».

 

 

 

29

Практическая работа № 21 «Измерение фокусного расстояния собирающей линзы». Оптические приборы.

 

 

 

30

Урок-практикум. Защита проектов по теме «Дефекты зрения и способы их устранения»

 

 

 

31-34

Резерв

 

 

 

 

Итого

 

 

 

 

С целью формирования ответственности у учащихся за качество осваиваемого программного материала, дисциплинированности в отношении к учебному процессу возможны фронтальный, персональный, текущий, тематический, административный, итоговый контроль, взаимоконтроль, самоконтроль. Контроль может осуществляться в виде самостоятельных работ, физических диктантов, контрольных тестов, контрольных работ, дифференцированных заданий по карточкам, защиты проектов, в игровой форме (с использованием за основу любой из интеллектуальных игр). Текущий контроль может реализовываться в форме устного фронтального вопроса, контрольных работ, физических диктантов, тестовых работ, кратковременных проверочных работ, лабораторных работ. Итоговый контроль проводится в виде контрольных тестовых работ и контрольных работ.

Система контроля за знаниями и умениями реализуется с помощью «Тетради открытий». В этой тетради учащиеся записывают план проведения и результаты своих наблюдений, экспериментов, которые они проводят как в классе, так и дома.

Формы подведения итогов: организация и проведение предметной недели по физике. В течении этой недели: выпускается газета научных открытий; учащиеся выступают с докладами перед другими классами; защита проекта, на котором учащиеся представляют самостоятельно сконструированные модели, приборы или демонстрационные опыты по любой теме.

Оценивание успешности обучающегося в выполнении проекта или исследования отличается тем, что при оценке успешности обучающегося в проекте или исследовании необходимо понимать, что самой значимой оценкой для него является общественное признание состоятельности (успешности, результативности). Положительной оценки достоин любой уровень достигнутых результатов. Оценивание степени сформированности умений и навыков проектной и исследовательской деятельности важно для учителя, работающего над формированием соответствующей компетентности у обучающегося.

Можно оценивать:

·         степень самостоятельности в выполнении различных этапов работы над проектом;

·         степень включённости в групповую работу и чёткость выполнения отведённой роли;

·         практическое использование предметных и общешкольных ЗУН;

·         количество новой информации использованной для выполнения проекта;

·         степень осмысления использованной информации;

·         уровень сложности и степень владения использованными методиками;

·         оригинальность идеи, способа решения проблемы;

·         осмысление проблемы проекта и формулирование цели проекта или исследования;

·         уровень организации и проведения презентации: устного сообщения, письменного отчёта, обеспечения объёктами наглядности;

·         владение рефлексией;

·         творческий подход в подготовке объектов наглядности презентации;

·         социальное и прикладное значение полученных результатов