РАБОЧАЯ ПРОГРАММА ОБЩЕОБРАЗОВАТЕЛЬНОГО УЧЕБНОГО ПРЕДМЕТА ОУП.06 «ФИЗИКА»
Оценка 5

РАБОЧАЯ ПРОГРАММА ОБЩЕОБРАЗОВАТЕЛЬНОГО УЧЕБНОГО ПРЕДМЕТА ОУП.06 «ФИЗИКА»

Оценка 5
Образовательные программы
docx
физика
10 кл—11 кл
14.11.2024
РАБОЧАЯ ПРОГРАММА  ОБЩЕОБРАЗОВАТЕЛЬНОГО УЧЕБНОГО ПРЕДМЕТА  ОУП.06 «ФИЗИКА»
Образовательная программа среднего профессионального образования – программа подготовки специалистов среднего звена 38.02.08 Торговое дело
ОУП 09 2024-2027 физика ТД-11.docx

Кировское областное государственное профессиональное образовательное автономное учреждение Вятский торгово-промышленный техникум

 

 

 

 

 

 

 

 

 

РАБОЧАЯ ПРОГРАММА

ОБЩЕОБРАЗОВАТЕЛЬНОГО УЧЕБНОГО ПРЕДМЕТА

 ОУП.06 «ФИЗИКА»

 

 

образовательной программы среднего профессионального образования –

программы подготовки квалифицированных рабочих, служащих/специалистов среднего звена

 

38.02.08 Торговое дело

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Кирс

2024


Составитель:

 

Фамилия, имя, отчество

Должность

Конькова Ольга Николаевна

преподаватель

 

 

 

 

 

 

Рассмотрено и рекомендовано ПЦК по общеобразовательному циклу

                                                                                                       (наименование предметно-цикловой комиссии)

протокол №___ от _______  20____ г.

                                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


ОГЛАВЛЕНИЕ

 

1.      ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ... 4

2. ОБЪЕМ, СОДЕРЖАНИЕ ОБЩЕОБРАЗОВАТЕЛЬНОГО УЧЕБНОГО ПРЕДМЕТА И ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ.. 11

 


1.     ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ

 

1.1. . Нормативно-правовое и методическое обеспечение разработки рабочей программы общеобразовательного учебного предмета

Рабочая программа общеобразовательного учебного предмета ОУП.06 «Физика» разработана на основе требований:

– Федерального государственного образовательного стандарта среднего общего образования, утверждённого приказом Министерства образования и науки РФ от 17.05.2012 г. № 413 с изменениями, внесенными приказами Министерства образования и науки Российской Федерации от 29 декабря 2014 г.№ 1645, от 31 декабря 2015 г. № 1578, от 29 июня 2017 г. № 613, от 12 августа 2022 г. № 413 и приказами Министерства просвещения Российской Федерации от 24 сентября 2020 г. № 519, от 11 декабря 2020 г. № 712, от 12.08.2022 г. №732, от 27.12.2023 г. № 1028;

­– Федерального государственного образовательного стандарта среднего профессионального образования по специальности: 38.02.08 Торговое дело, утвержденного приказом Минпросвещения России от 19.07.2023 № 548;

– Федеральной образовательной программы среднего общего образования, утвержденной приказом Минпросвещения России от 18.05.2023 № 371, с изменениями, внесенными приказом Министерства просвещения Российской Федерации от 1 февраля 2024 г. № 62, от 19.03.2024 г. № 171;

–   с учетом федеральной рабочей программы среднего общего образования «Физика» 10-11 класс (базовый уровень), разработанной ФГБНУ «Институт стратегии развития образования», 2023 г.;

– с учетом получаемой профессии/специальности.

 

 

1.2. Область применения рабочей программы

Рабочая программа общеобразовательного учебного предмета ОУП.06 «Физика» является частью общеобразовательного цикла образовательной программы среднего профессионального образования – программы подготовки специалистов среднего звена/ программы подготовки квалифицированных рабочих (служащих) по специальности/профессии среднего профессионального образования 38.02.08 Торговое дело.

Рабочая программа предназначена для использования в учебном процессе очной формы обучения.

 

1.3. Место учебного предмета в структуре образовательной программы

 

Учебный предмет является предметом общеобразовательного учебного цикла в соответствии с естественно-научным профилем профессионального образования.

Учебный предмет относится к предметной области «Естественные научные предметы».

Учебный предмет является обязательным предметом из предметных областей.

Уровень освоения учебного предмета в соответствии с ФГОС среднего общего образования углублённый.

Реализация содержания учебного предмета предполагает соблюдение принципа строгой преемственности по отношению к содержанию курса «Физика» на ступени основного общего образования.

В то же время учебный предмет «Физика» для профессиональных образовательных организаций обладает самостоятельностью и цельностью.

Рабочая программа учебного предмета «Физика» имеет межпредметную связь с общеобразовательными учебными предметами «Математика», «Химия», «Биология» (в соответствии с учебным планом).

Для учета специфики получаемой профессии/специальности в рабочую программу общеобразовательного предмета включается профессионально-ориентированное содержание.

Освоение программы учебного предмета «Физика» сопровождается текущим контролем успеваемости и промежуточной аттестацией обучающихся.

Изучение учебного предмета «Физика» завершается промежуточной аттестацией в форме экзамена в рамках освоения ППССЗ/ППКРС на базе основного общего образования.

 

1.4. Планируемые результаты освоения учебного предмета

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ:

Личностные результаты освоения учебного предмета «Физика» должны отражать готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации основных направлений воспитательной деятельности, в том числе в части:

1)      гражданского воспитания:

— сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;

— принятие традиционных общечеловеческих гуманистических и демократических ценностей;

 — готовность вести совместную деятельность в интересах гражданского общества, участвовать в самоуправлении в школе и детско-юношеских организациях;

 — умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;

 — готовность к гуманитарной и волонтёрской деятельности.

2)      патриотического воспитания:

— сформированность российской гражданской идентичности, патриотизма;

— ценностное отношение к государственным символам; достижениям России в физике и технике.

3)      духовно-нравственного воспитания:

— сформированность нравственного сознания, этического поведения;

— способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в деятельности учёного;

 — осознание личного вклада в построение устойчивого будущего.

 

4)      эстетического воспитания:

— эстетическое отношение к миру, включая эстетику научного творчества, присущего физической науке.

5)      трудового воспитания:

— интерес к различным сферам профессиональной деятельности, в том числе связанным с физикой и техникой, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;

— готовность и способность к образованию и самообразованию в области физики на протяжении всей жизни.

6)      экологического воспитания:

— сформированность экологической культуры, осознание глобального характера экологических проблем;

 — планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества;

— расширение опыта деятельности экологической направленности на основе имеющихся знаний по физике.

7)      ценности научного познания:

— сформированность мировоззрения, соответствующего современному уровню развития физической науки;

 — осознание ценности научной деятельности, готовность в процессе изучения физики осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

 

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Познавательные универсальные учебные действия

Базовые логические действия:

- самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;

- определять цели деятельности, задавать параметры и критерии их достижения;  

- выявлять закономерности и противоречия в рассматриваемых физических явлениях;

- разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;

- вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;

- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

- развивать креативное мышление при решении жизненных проблем.

Базовые исследовательские действия:

- владеть научной терминологией, ключевыми понятиями и методами физической науки;

- владеть навыками учебно-исследовательской и проектной деятельности в области физики, способностью и готовностью к самостоятельному поиску методов решения задач физического содержания, применению различных методов познания;

- владеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных проектов в области физики;

- выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;

- анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;

- ставить и формулировать собственные задачи в образовательной деятельности, в том числе при изучении физики;

- давать оценку новым ситуациям, оценивать приобретённый опыт;

- уметь переносить знания по физике в практическую область жизнедеятельности;

- уметь интегрировать знания из разных предметных областей;

- выдвигать новые идеи, предлагать оригинальные подходы и решения;

- ставить проблемы и задачи, допускающие альтернативные решения.

Работа с информацией:

- владеть навыками получения информации физического содержания из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;

- оценивать достоверность информации;

- использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

-. создавать тексты физического содержания в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.

Коммуникативные универсальные учебные действия:

- осуществлять общение на уроках физики и во вне­урочной деятельности;

- распознавать предпосылки конфликтных ситуаций и смягчать конфликты;

- развёрнуто и логично излагать свою точку зрения с использованием языковых средств;

- понимать и использовать преимущества командной и индивидуальной работы;

- выбирать тематику и методы совместных действий с учётом общих интересов, и возможностей каждого члена коллектива;

- принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;

- оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;

- предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;

- осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Регулятивные универсальные учебные действия

Самоорганизация:

- самостоятельно осуществлять познавательную деятельность в области физики и астрономии, выявлять проблемы, ставить и формулировать собственные задачи;

- самостоятельно составлять план решения расчётных и качественных задач, план выполнения практической работы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;

- давать оценку новым ситуациям; расширять рамки учебного предмета на основе личных предпочтений;

- делать осознанный выбор, аргументировать его, брать на себя ответственность за решение;

-  оценивать приобретённый опыт; способствовать формированию и проявлению эрудиции в области физики, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль, эмоциональный интеллект:

- давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;

- владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований;

- использовать приёмы рефлексии для оценки ситуации, выбора верного решения;

- уметь оценивать риски и своевременно принимать решения по их снижению;

- принимать мотивы и аргументы других при анализе результатов деятельности;

- принимать себя, понимая свои недостатки и достоинства;

- принимать мотивы и аргументы других при анализе результатов деятельности;

- признавать своё право и право других на ошибки.

В процессе достижения личностных результатов освоения программы по физике для уровня среднего общего образования у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:

- самосознания, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе;

- саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;

- внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать, исходя из своих возможностей;

- эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении общения, способность к сочувствию и сопереживанию;

- социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

 

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ:

К концу обучения в 10 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;

учитывать границы применения изученных физических моделей: материальная точка, инерциальная система отсчёта, абсолютно твёрдое тело, идеальный газ, модели строения газов, жидкостей и твёрдых тел, точечный электрический заряд при решении физических задач;

распознавать физические явления (процессы) и объяснять их на основе законов механики, молекулярно-кинетической теории строения вещества и электродинамики: равномерное и равноускоренное прямолинейное движение, свободное падение тел, движение по окружности, инерция, взаимодействие тел, диффузия, броуновское движение, строение жидкостей и твёрдых тел, изменение объёма тел при нагревании (охлаждении), тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, повышение давления газа при его нагревании в закрытом сосуде, связь между параметрами состояния газа в изопроцессах, электризация тел, взаимодействие зарядов;

описывать механическое движение, используя физические величины: координата, путь, перемещение, скорость, ускорение, масса тела, сила, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинами;

описывать изученные тепловые свойства тел и тепловые явления, используя физические величины: давление газа, температура, средняя кинетическая энергия хаотического движения молекул, среднеквадратичная скорость молекул, количество теплоты, внутренняя энергия, работа газа, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинам;

описывать изученные электрические свойства вещества и электрические явления (процессы), используя физические величины: электрический заряд, электрическое поле, напряжённость поля, потенциал, разность потенциалов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы; указывать формулы, связывающие данную физическую величину с другими величинами;

анализировать физические процессы и явления, используя физические законы и принципы: закон всемирного тяготения, I, II и III законы Ньютона, закон сохранения механической энергии, закон сохранения импульса, принцип суперпозиции сил, принцип равноправия инерциальных систем отсчёта, молекулярно-кинетическую теорию строения вещества, газовые законы, связь средней кинетической энергии теплового движения молекул с абсолютной температурой, первый закон термодинамики, закон сохранения электрического заряда, закон Кулона, при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

объяснять основные принципы действия машин, приборов и технических устройств; различать условия их безопасного использования в повседневной жизни;

выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых, и косвенных измерений, при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;

 осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;

исследовать зависимости между физическими величинами с использованием прямых измерений, при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать    физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

 использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников, критически анализировать получаемую информацию;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, объяснение процессов окружающего мира, в развитие техники и технологий;

 использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

 работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

К концу обучения в 11 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей, целостность и единство физической картины мира;

 учитывать границы применения изученных физических моделей: точечный электрический заряд, луч света, точечный источник света, ядерная модель атома, нуклонная модель атомного ядра при решении физических задач;

 распознавать физические явления (процессы) и объяснять их на основе законов электродинамики и квантовой физики: электрическая проводимость, тепловое, световое, химическое, магнитное действия тока, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и движущийся заряд, электромагнитные колебания и волны, прямолинейное распространение света, отражение, преломление, интерференция, дифракция и поляризация света, дисперсия света, фотоэлектрический эффект (фотоэффект), световое давление, возникновение линейчатого спектра атома водорода, естественная и искусственная радиоактивность;

описывать изученные свойства вещества (электрические, магнитные, оптические, электрическую проводимость различных сред) и электромагнитные явления (процессы), используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, разность потенциалов, электродвижущая сила, работа тока, индукция магнитного поля, сила Ампера, сила Лоренца, индуктивность катушки, энергия электрического и магнитного полей, период и частота колебаний в колебательном контуре, заряд и сила тока в процессе гармонических электромагнитных колебаний, фокусное расстояние и оптическая сила линзы, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами;

описывать изученные квантовые явления и процессы, используя физические величины: скорость электромагнитных волн, длина волны и частота света, энергия и импульс фотона, период полураспада, энергия связи атомных ядер, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

анализировать физические процессы и явления, используя физические законы и принципы: закон Ома, законы последовательного и параллельного соединения проводников, закон Джоуля–Ленца, закон электромагнитной индукции, закон прямолинейного распространения света, законы отражения света, законы преломления света, уравнение Эйнштейна для фотоэффекта, закон сохранения энергии, закон сохранения импульса, закон сохранения электрического заряда, закон сохранения массового числа, постулаты Бора, закон радиоактивного распада, при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

 определять направление вектора индукции магнитного поля проводника с током, силы Ампера и силы Лоренца;

строить и описывать изображение, создаваемое плоским зеркалом, тонкой линзой;

выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых, и косвенных измерений: при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;

осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;

исследовать зависимости физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научно-популярной информации, полученной из различных источников, критически анализировать получаемую информацию;

объяснять принципы действия машин, приборов и технических устройств, различать условия их безопасного использования в повседневной жизни;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, в объяснение процессов окружающего мира, в развитие техники и технологий;

использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

 

2. ОБЪЕМ, СОДЕРЖАНИЕ ОБЩЕОБРАЗОВАТЕЛЬНОГО УЧЕБНОГО ПРЕДМЕТА И ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

 

2.1. Объем учебного предмета и виды учебной деятельности

 

Вид учебной деятельности

Объем часов

всего

из них профессионально-направленное содержание (прикладной модуль), в форме практической подготовки

Объем образовательной программы учебного предмета (всего), в том числе

90

2

Объем работы обучающихся во взаимодействии с преподавателем по видам учебных занятий:

84

2

уроки

40

 

практические занятия

42

 

лабораторные занятия

-

 

консультации

-

 

лекции

-

 

семинары

-

 

Самостоятельная работа обучающегося

(в зависимости от ФГОС СПО)

6

 

Промежуточная аттестация в форме

экзамена

2

 

 

2.2. Содержание учебного предмета

       10 КЛАСС

Раздел 1. Физика и методы научного познания

Физика – наука о природе. Научные методы познания окружающего мира. Роль эксперимента и теории в процессе познания природы. Эксперимент в физике.

Моделирование физических явлений и процессов. Научные гипотезы. Физические законы и теории. Границы применимости физических законов. Принцип соответствия.

Роль и место физики в формировании современной научной картины мира, в практической деятельности людей.

Демонстрации

Аналоговые и цифровые измерительные приборы, компьютерные датчики.

Раздел 2. Механика

Тема 1. Кинематика

 Механическое движение. Относительность механического движения. Система отсчёта. Траектория.

Перемещение, скорость (средняя скорость, мгновенная скорость) и ускорение материальной точки, их проекции на оси системы координат. Сложение перемещений и сложение скоростей.

Равномерное и равноускоренное прямолинейное движение. Графики зависимости координат, скорости, ускорения, пути и перемещения материальной точки от времени.

Свободное падение. Ускорение свободного падения.

Криволинейное движение. Движение материальной точки по окружности с постоянной по модулю скоростью. Угловая скорость, линейная скорость. Период и частота обращения. Центростремительное ускорение.

Технические устройства и практическое применение: спидометр, движение снарядов, цепные и ремённые передачи.

Демонстрации

Модель системы отсчёта, иллюстрация кинематических характеристик движения.

Преобразование движений с использованием простых механизмов.

Падение тел в воздухе и в разреженном пространстве.

Наблюдение движения тела, брошенного под углом к горизонту и горизонтально.

Измерение ускорения свободного падения.

Направление скорости при движении по окружности.

Ученический эксперимент, лабораторные работы

Изучение неравномерного движения с целью определения мгновенной скорости.

Исследование соотношения между путями, пройденными телом за последовательные равные промежутки времени при равноускоренном движении с начальной скоростью, равной нулю.

Изучение движения шарика в вязкой жидкости.

Изучение движения тела, брошенного горизонтально.

Тема 2. Динамика

Принцип относительности Галилея. Первый закон Ньютона. Инерциальные системы отсчёта.

Масса тела. Сила. Принцип суперпозиции сил. Второй закон Ньютона для материальной точки. Третий закон Ньютона для материальных точек.

Закон всемирного тяготения. Сила тяжести. Первая космическая скорость.

Сила упругости. Закон Гука. Вес тела.

Трение. Виды трения (покоя, скольжения, качения). Сила трения. Сухое трение. Сила трения скольжения и сила трения покоя. Коэффициент трения. Сила сопротивления при движении тела в жидкости или газе.

Поступательное и вращательное движение абсолютно твёрдого тела.

Момент силы относительно оси вращения. Плечо силы. Условия равновесия твёрдого тела.

Технические устройства и практическое применение: подшипники, движение искусственных спутников.

Демонстрации

Явление инерции.

Сравнение масс взаимодействующих тел.

Второй закон Ньютона.

Измерение сил.

Сложение сил.

Зависимость силы упругости от деформации.

Невесомость. Вес тела при ускоренном подъёме и падении.

Сравнение сил трения покоя, качения и скольжения.

Условия равновесия твёрдого тела. Виды равновесия.

Ученический эксперимент, лабораторные работы

Изучение движения бруска по наклонной плоскости.

Исследование зависимости сил упругости, возникающих в пружине и резиновом образце, от их деформации.

Исследование условий равновесия твёрдого тела, имеющего ось вращения.

Тема 3. Законы сохранения в механике

Импульс материальной точки (тела), системы материальных точек. Импульс силы и изменение импульса тела. Закон сохранения импульса. Реактивное движение.

Работа силы. Мощность силы.

Кинетическая энергия материальной точки. Теорема об изменении кинетической энергии.

Потенциальная энергия. Потенциальная энергия упруго деформированной пружины. Потенциальная энергия тела вблизи поверхности Земли.

Потенциальные и непотенциальные силы. Связь работы непотенциальных сил с изменением механической энергии системы тел. Закон сохранения механической энергии.

Упругие и неупругие столкновения.

Технические устройства и практическое применение: водомёт, копёр, пружинный пистолет, движение ракет.

Демонстрации

Закон сохранения импульса.

Реактивное движение.

Переход потенциальной энергии в кинетическую и обратно.

Ученический эксперимент, лабораторные работы

Изучение абсолютно неупругого удара с помощью двух одинаковых нитяных маятников.

Исследование связи работы силы с изменением механической энергии тела на примере растяжения резинового жгута.

Раздел 3. Молекулярная физика и термодинамика

Тема 1. Основы молекулярно-кинетической теории

 Основные положения молекулярно-кинетической теории и их опытное обоснование. Броуновское движение. Диффузия. Характер движения и взаимодействия частиц вещества. Модели строения газов, жидкостей и твёрдых тел и объяснение свойств вещества на основе этих моделей. Масса и размеры молекул.

Количество вещества. Постоянная Авогадро.

Тепловое равновесие. Температура и её измерение. Шкала температур Цельсия.

Модель идеального газа. Основное уравнение молекулярно-кинетической теории идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частиц газа. Шкала температур Кельвина. Газовые законы. Уравнение Менделеева–Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества. Графическое представление изопроцессов: изотерма, изохора, изобара.

Технические устройства и практическое применение: термометр, барометр.

 Демонстрации

Опыты, доказывающие дискретное строение вещества, фотографии молекул органических соединений.

Опыты по диффузии жидкостей и газов.

Модель броуновского движения.

Модель опыта Штерна.

Опыты, доказывающие существование межмолекулярного взаимодействия.

Модель, иллюстрирующая природу давления газа на стенки сосуда.

Опыты, иллюстрирующие уравнение состояния идеального газа, изопроцессы.

Ученический эксперимент, лабораторные работы

Определение массы воздуха в классной комнате на основе измерений объёма комнаты, давления и температуры воздуха в ней.

Исследование зависимости между параметрами состояния разреженного газа.

Тема 2. Основы термодинамики

Термодинамическая система. Внутренняя энергия термодинамической системы и способы её изменения. Количество теплоты и работа. Внутренняя энергия одноатомного идеального газа. Виды теплопередачи: теплопроводность, конвекция, излучение. Удельная теплоёмкость вещества. Количество теплоты при теплопередаче.

Понятие об адиабатном процессе. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Графическая интерпретация работы газа.

Второй закон термодинамики. Необратимость процессов в природе.

Тепловые машины. Принципы действия тепловых машин. Преобразования энергии в тепловых машинах. Коэффициент полезного действия тепловой машины.

Цикл Карно и его коэффициент полезного действия. Экологические проблемы теплоэнергетики.

Технические устройства и практическое применение: двигатель внутреннего сгорания, бытовой холодильник, кондиционер.

Демонстрации

Изменение внутренней энергии тела при совершении работы: вылет пробки из бутылки под действием сжатого воздуха, нагревание эфира в латунной трубке путём трения (видеодемонстрация).

Изменение внутренней энергии (температуры) тела при теплопередаче.

Опыт по адиабатному расширению воздуха (опыт с воздушным огнивом).

Модели паровой турбины, двигателя внутреннего сгорания, реактивного двигателя.

Ученический эксперимент, лабораторные работы

Измерение удельной теплоёмкости.

Тема 3. Агрегатные состояния вещества. Фазовые переходы

 Парообразование и конденсация. Испарение и кипение. Абсолютная и относительная влажность воздуха. Насыщенный пар. Удельная теплота парообразования. Зависимость температуры кипения от давления.

Твёрдое тело. Кристаллические и аморфные тела. Анизотропия свойств кристаллов. Жидкие кристаллы. Современные материалы. Плавление и кристаллизация. Удельная теплота плавления. Сублимация.

Уравнение теплового баланса.

Технические устройства и практическое применение: гигрометр и психрометр, калориметр, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологии.

Демонстрации

Свойства насыщенных паров.

Кипение при пониженном давлении.

Способы измерения влажности.

Наблюдение нагревания и плавления кристаллического вещества.

Демонстрация кристаллов.

Ученический эксперимент, лабораторные работы

 Измерение относительной влажности воздуха.

Раздел 4. Электродинамика

Тема 1. Электростатика

Электризация тел. Электрический заряд. Два вида электрических зарядов.

Проводники, диэлектрики и полупроводники. Закон сохранения электрического заряда.

Взаимодействие зарядов. Закон Кулона. Точечный электрический заряд.

Электрическое поле. Напряжённость электрического поля. Принцип суперпозиции электрических полей. Линии напряжённости электрического поля.

Работа сил электростатического поля. Потенциал. Разность потенциалов.

Проводники и диэлектрики в электростатическом поле. Диэлектрическая проницаемость.

Электроёмкость. Конденсатор. Электроёмкость плоского конденсатора.

Энергия заряженного конденсатора.

Технические устройства и практическое применение: электроскоп, электрометр, электростатическая защита, заземление электроприборов, конденсатор, копировальный аппарат, струйный принтер.

Демонстрации

 Устройство и принцип действия электрометра.

Взаимодействие наэлектризованных тел.

Электрическое поле заряженных тел.

Проводники в электростатическом поле.

Электростатическая защита.

Диэлектрики в электростатическом поле.

Зависимость электроёмкости плоского конденсатора от площади пластин, расстояния между ними и диэлектрической проницаемости.

Энергия заряженного конденсатора.

Ученический эксперимент, лабораторные работы

 Измерение электроёмкости конденсатора.

Тема 2. Постоянный электрический ток. Токи в различных средах

 Электрический ток. Условия существования электрического тока. Источники тока. Сила тока. Постоянный ток.

Напряжение. Закон Ома для участка цепи.

Электрическое сопротивление. Удельное сопротивление вещества.

Последовательное, параллельное, смешанное соединение проводников.

Работа электрического тока. Закон Джоуля–Ленца. Мощность электрического тока.

Электродвижущая сила и внутреннее сопротивление источника тока. Закон Ома для полной (замкнутой) электрической цепи. Короткое замыкание.

Электронная проводимость твёрдых металлов. Зависимость сопротивления металлов от температуры. Сверхпроводимость.

Электрический ток в вакууме. Свойства электронных пучков.

Полупроводники. Собственная и примесная проводимость полупроводников.

Свойства p–n-перехода. Полупроводниковые приборы.

Электрический ток в растворах и расплавах электролитов. Электролитическая диссоциация. Электролиз.

Электрический ток в газах. Самостоятельный и несамостоятельный разряд.

Молния. Плазма.

Технические устройства и практическое применение: амперметр, вольтметр, реостат, источники тока, электронагревательные приборы, электроосветительные приборы, термометр сопротивления, вакуумный диод, термисторы и фоторезисторы, полупроводниковый диод, гальваника.

Демонстрации

Измерение силы тока и напряжения.

Зависимость сопротивления цилиндрических проводников от длины, площади поперечного сечения и материала.

Смешанное соединение проводников.

Прямое измерение электродвижущей силы. Короткое замыкание гальванического элемента и оценка внутреннего сопротивления.

Зависимость сопротивления металлов от температуры.

Проводимость электролитов.

Искровой разряд и проводимость воздуха.

Односторонняя проводимость диода.

Ученический эксперимент, лабораторные работы

Изучение смешанного соединения резисторов.

Измерение электродвижущей силы источника тока и его внутреннего сопротивления.

Наблюдение электролиза.

Межпредметные связи

Изучение курса физики базового уровня в 10 классе осуществляется с учётом содержательных межпредметных связей с курсами математики, биологии, химии, географии и технологии.

Межпредметные понятия, связанные с изучением методов научного познания: явление, научный факт, гипотеза, физическая величина, закон, теория, наблюдение, эксперимент, моделирование, модель, измерение.

Математика: решение системы уравнений, линейная функция, парабола, гипербола, их графики и свойства, тригонометрические функции: синус, косинус, тангенс, котангенс, основное тригонометрическое тождество, векторы и их проекции на оси координат, сложение векторов.

Биология: механическое движение в живой природе, диффузия, осмос, теплообмен живых организмов (виды теплопередачи, тепловое равновесие), электрические явления в живой природе.

Химия: дискретное строение вещества, строение атомов и молекул, моль вещества, молярная масса, тепловые свойства твёрдых тел, жидкостей и газов, электрические свойства металлов, электролитическая диссоциация, гальваника.

География: влажность воздуха, ветры, барометр, термометр.

Технология: преобразование движений с использованием механизмов, учёт трения в технике, подшипники, использование закона сохранения импульса в технике (ракета, водомёт и другие), двигатель внутреннего сгорания, паровая турбина, бытовой холодильник, кондиционер, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологии, электростатическая защита, заземление электроприборов, ксерокс, струйный принтер, электронагревательные приборы, электроосветительные приборы, гальваника.

 

11 КЛАСС

Раздел 4. Электродинамика

Тема 3. Магнитное поле. Электромагнитная индукция

Постоянные магниты. Взаимодействие постоянных магнитов. Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции магнитных полей.

Линии магнитной индукции. Картина линий магнитной индукции поля постоянных магнитов.

Магнитное поле проводника с током. Картина линий индукции магнитного поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током. Опыт Эрстеда. Взаимодействие проводников с током.

Сила Ампера, её модуль и направление.

Сила Лоренца, её модуль и направление. Движение заряженной частицы в однородном магнитном поле. Работа силы Лоренца.

Явление электромагнитной индукции. Поток вектора магнитной индукции.

Электродвижущая сила индукции. Закон электромагнитной индукции Фарадея.

Вихревое электрическое поле. Электродвижущая сила индукции в проводнике, движущемся поступательно в однородном магнитном поле.

Правило Ленца.

Индуктивность. Явление самоиндукции. Электродвижущая сила самоиндукции.

Энергия магнитного поля катушки с током.

Электромагнитное поле.

Технические устройства и практическое применение: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных частиц, индукционная печь.

Демонстрации Опыт Эрстеда.

Отклонение электронного пучка магнитным полем.

Линии индукции магнитного поля.

Взаимодействие двух проводников с током.

Сила Ампера.

Действие силы Лоренца на ионы электролита.

Явление электромагнитной индукции.

Правило Ленца.

Зависимость электродвижущей силы индукции от скорости изменения магнитного потока.

Явление самоиндукции.

Ученический эксперимент, лабораторные работы

Изучение магнитного поля катушки с током.

Исследование действия постоянного магнита на рамку с током.

Исследование явления электромагнитной индукции.

Раздел 5. Колебания и волны

Тема 1. Механические и электромагнитные колебания

 Колебательная система. Свободные механические колебания. Гармонические колебания. Период, частота, амплитуда и фаза колебаний. Пружинный маятник.

Математический маятник. Уравнение гармонических колебаний. Превращение энергии при гармонических колебаниях.

Колебательный контур. Свободные электромагнитные колебания в идеальном колебательном контуре. Аналогия между механическими и электромагнитными колебаниями. Формула Томсона. Закон сохранения энергии в идеальном колебательном контуре.

Представление о затухающих колебаниях. Вынужденные механические колебания. Резонанс. Вынужденные электромагнитные колебания.

Переменный ток. Синусоидальный переменный ток. Мощность переменного тока. Амплитудное и действующее значение силы тока и напряжения.

Трансформатор. Производство, передача и потребление электрической энергии. Экологические риски при производстве электроэнергии. Культура использования электроэнергии в повседневной жизни.

Технические устройства и практическое применение: электрический звонок, генератор переменного тока, линии электропередач.

Демонстрации

Исследование параметров колебательной системы (пружинный или математический маятник).

Наблюдение затухающих колебаний.

Исследование свойств вынужденных колебаний.

Наблюдение резонанса.

Свободные электромагнитные колебания.

Осциллограммы (зависимости силы тока и напряжения от времени) для электромагнитных колебаний.

Резонанс при последовательном соединении резистора, катушки индуктивности и конденсатора.

Модель линии электропередачи.

Ученический эксперимент, лабораторные работы

Исследование зависимости периода малых колебаний груза на нити от длины нити и массы груза.

Исследование переменного тока в цепи из последовательно соединённых конденсатора, катушки и резистора.

Тема 2. Механические и электромагнитные волны

 Механические волны, условия распространения. Период. Скорость распространения и длина волны. Поперечные и продольные волны. Интерференция и дифракция механических волн.

Звук. Скорость звука. Громкость звука. Высота тона. Тембр звука.

Электромагнитные волны. Условия излучения электромагнитных волн.

Взаимная ориентация векторов E, B, v в электромагнитной волне. Свойства электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция. Скорость электромагнитных волн.

Шкала электромагнитных волн. Применение электромагнитных волн в технике и быту.

Принципы радиосвязи и телевидения. Радиолокация.

Электромагнитное загрязнение окружающей среды.

Технические устройства и практическое применение: музыкальные инструменты, ультразвуковая диагностика в технике и медицине, радар, радиоприёмник, телевизор, антенна, телефон, СВЧ-печь.

Демонстрации

Образование и распространение поперечных и продольных волн.

Колеблющееся тело как источник звука.

Наблюдение отражения и преломления механических волн.

Наблюдение интерференции и дифракции механических волн.

Звуковой резонанс.

Наблюдение связи громкости звука и высоты тона с амплитудой и частотой колебаний.

Исследование свойств электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция.

Тема 3. Оптика

 Геометрическая оптика. Прямолинейное распространение света в однородной среде. Луч света. Точечный источник света.

Отражение света. Законы отражения света. Построение изображений в плоском зеркале.

Преломление света. Законы преломления света. Абсолютный показатель преломления. Полное внутреннее отражение. Предельный угол полного внутреннего отражения.

Дисперсия света. Сложный состав белого света. Цвет.

Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы. Построение изображений в собирающих и рассеивающих линзах. Формула тонкой линзы. Увеличение, даваемое линзой.

Пределы применимости геометрической оптики.

Волновая оптика. Интерференция света. Когерентные источники. Условия наблюдения максимумов и минимумов в интерференционной картине от двух синфазных когерентных источников.

Дифракция света. Дифракционная решётка. Условие наблюдения главных максимумов при падении монохроматического света на дифракционную решётку.

Поляризация света.

Технические устройства и практическое применение: очки, лупа, фотоаппарат, проекционный аппарат, микроскоп, телескоп, волоконная оптика, дифракционная решётка, поляроид.

Демонстрации

Прямолинейное распространение, отражение и преломление света.

Оптические приборы.

Полное внутреннее отражение. Модель световода.

Исследование свойств изображений в линзах.

Модели микроскопа, телескопа.

Наблюдение интерференции света.

Наблюдение дифракции света.

Наблюдение дисперсии света.

Получение спектра с помощью призмы.

Получение спектра с помощью дифракционной решётки.

Наблюдение поляризации света.

Ученический эксперимент, лабораторные работы

 Измерение показателя преломления стекла.

Исследование свойств изображений в линзах.

Наблюдение дисперсии света.

Раздел 6. Основы специальной теории относительности

Границы применимости классической механики. Постулаты специальной теории относительности: инвариантность модуля скорости света в вакууме, принцип относительности Эйнштейна.

Относительность одновременности. Замедление времени и сокращение длины.

Энергия и импульс релятивистской частицы.

Связь массы с энергией и импульсом релятивистской частицы. Энергия покоя.

Раздел 7. Квантовая физика

Тема 1. Элементы квантовой оптики

 Фотоны. Формула Планка связи энергии фотона с его частотой. Энергия и импульс фотона.

Открытие и исследование фотоэффекта. Опыты А.Г. Столетова. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. «Красная граница» фотоэффекта.

Давление света. Опыты П.Н. Лебедева.

Химическое действие света.

Технические устройства и практическое применение: фотоэлемент, фотодатчик, солнечная батарея, светодиод.

Демонстрации

Фотоэффект на установке с цинковой пластиной.

Исследование законов внешнего фотоэффекта.

Светодиод.

Солнечная батарея.

Тема 2. Строение атома

Модель атома Томсона. Опыты Резерфорда по рассеянию α-частиц.

Планетарная модель атома. Постулаты Бора. Излучение и поглощение фотонов при переходе атома с одного уровня энергии на другой. Виды спектров. Спектр уровней энергии атома водорода.

Волновые свойства частиц. Волны де Бройля. Корпускулярно-волновой дуализм.

Спонтанное и вынужденное излучение.

Технические устройства и практическое применение: спектральный анализ (спектроскоп), лазер, квантовый компьютер.

Демонстрации

Модель опыта Резерфорда.

Определение длины волны лазера.

Наблюдение линейчатых спектров излучения.

Лазер.

Ученический эксперимент, лабораторные работы

Наблюдение линейчатого спектра.

Тема 3. Атомное ядро

 Эксперименты, доказывающие сложность строения ядра. Открытие радиоактивности. Опыты Резерфорда по определению состава радиоактивного излучения. Свойства альфа-, бета-, гамма-излучения. Влияние радиоактивности на живые организмы.

Открытие протона и нейтрона. Нуклонная модель ядра Гейзенберга– Иваненко. Заряд ядра. Массовое число ядра. Изотопы.

Альфа-распад. Электронный и позитронный бета-распад. Гамма-излучение.

Закон радиоактивного распада.

Энергия связи нуклонов в ядре. Ядерные силы. Дефект массы ядра.

Ядерные реакции. Деление и синтез ядер.

Ядерный реактор. Термоядерный синтез. Проблемы и перспективы ядерной энергетики. Экологические аспекты ядерной энергетики.

Элементарные частицы. Открытие позитрона.

Методы наблюдения и регистрации элементарных частиц.

Фундаментальные взаимодействия. Единство физической картины мира.

Технические устройства и практическое применение: дозиметр, камера Вильсона, ядерный реактор, атомная бомба.

Демонстрации

 Счётчик ионизирующих частиц.

Ученический эксперимент, лабораторные работы

 Исследование треков частиц (по готовым фотографиям).

 

Раздел 8. Элементы астрономии и астрофизики

Этапы развития астрономии. Прикладное и мировоззренческое значение астрономии.

Вид звёздного неба. Созвездия, яркие звёзды, планеты, их видимое движение.

Солнечная система.

Солнце. Солнечная активность. Источник энергии Солнца и звёзд. Звёзды, их основные характеристики. Диаграмма «спектральный класс – светимость». Звёзды главной последовательности. Зависимость «масса – светимость» для звёзд главной последовательности. Внутреннее строение звёзд. Современные представления о происхождении и эволюции Солнца и звёзд. Этапы жизни звёзд.

Млечный Путь – наша Галактика. Положение и движение Солнца в Галактике.

Типы галактик. Радиогалактики и квазары. Чёрные дыры в ядрах галактик.

Вселенная. Расширение Вселенной. Закон Хаббла. Разбегание галактик.

Теория Большого взрыва. Реликтовое излучение.

Масштабная структура Вселенной. Метагалактика.

Нерешённые проблемы астрономии.

Ученические наблюдения

Наблюдения невооружённым глазом с использованием компьютерных приложений для определения положения небесных объектов на конкретную дату: основные созвездия Северного полушария и яркие звёзды.

Наблюдения в телескоп Луны, планет, Млечного Пути.

Обобщающее повторение

Роль физики и астрономии в экономической, технологической, социальной и этической сферах деятельности человека, роль и место физики и астрономии в современной научной картине мира, роль физической теории в формировании представлений о физической картине мира, место физической картины мира в общем ряду современных естественно-научных представлений о природе.

Межпредметные связи

Изучение курса физики базового уровня в 11 классе осуществляется с учётом содержательных межпредметных связей с курсами математики, биологии, химии, географии и технологии.

Межпредметные понятия, связанные с изучением методов научного познания: явление, научный факт, гипотеза, физическая величина, закон, теория, наблюдение, эксперимент, моделирование, модель, измерение.

Математика: решение системы уравнений, тригонометрические функции: синус, косинус, тангенс, котангенс, основное тригонометрическое тождество, векторы и их проекции на оси координат, сложение векторов, производные элементарных функций, признаки подобия треугольников, определение площади плоских фигур и объёма тел.

Биология: электрические явления в живой природе, колебательные движения в живой природе, оптические явления в живой природе, действие радиации на живые организмы.

Химия: строение атомов и молекул, кристаллическая структура твёрдых тел, механизмы образования кристаллической решётки, спектральный анализ.

География: магнитные полюса Земли, залежи магнитных руд, фотосъёмка земной поверхности, предсказание землетрясений.

Технология: линии электропередач, генератор переменного тока, электродвигатель, индукционная печь, радар, радиоприёмник, телевизор, антенна, телефон, СВЧ-печь, проекционный аппарат, волоконная оптика, солнечная батарея.

 

 

Очная форма обучения

 

Наименование

разделов

и тем

Содержание учебного материала и формы организации деятельности обучающихся

Объем часов, час

Виды компетенций, личностных результатов, формированию которых способствует элемент программы

 

РАЗДЕЛ 1. ФИЗИКА И МЕТОДЫ НАУЧНОГО ПОЗНАНИЯ (2 ч)

 

Физика и методы научного познания (2 ч)

Содержание учебного материала:

 

2

ОК.02,ОК.04, ОК.05,ОК.06,ОК.07

 

Тема урока (теоретическая подготовка):

Физика — наука о природе. Научные методы познания окружающего мира. Роль эксперимента и теории в процессе познания природы. Эксперимент в физике. Моделирование физических явлений и процессов. Научные гипотезы. Физические законы и теории. Границы применимости физических законов. Принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей

 

 

Практические работы

1.Изучение неравномерного движения с целью определения мгновенной скорости.

2.Исследование соотношения между путями, пройденными телом за последовательные равные промежутки времени при равноускоренном движении с начальной скоростью, равной нулю.

3.Изучение движения шарика в вязкой жидкости.

4.Изучение движения тела, брошенного горизонтально.

 

 

РАЗДЕЛ 2. МЕХАНИКА (18 ч)

Кинематика (6 ч)

Содержание учебного материала:

 

6

ОК.02,ОК.04, ОК.05,ОК.06,ОК.07

 

Тема урока (теоретическая подготовка):

Механическое движение. Относительность механического движения. Система отсчёта. Траектория.

Перемещение, скорость (средняя скорость, мгновенная скорость) и ускорение материальной точки, их проекции на оси системы координат. Сложение перемещений и сложение скоростей. Равномерное и равноускоренное прямолинейное движение. Графики зависимости координат, скорости, ускорения и пути материальной точки от времени. Свободное падение. Ускорение свободного падения. Графики зависимости координат, скорости и ускорения материальной точки от времени. Криволинейное движение. Движение материальной точки по окружности. Угловая и линейная скорость. Период и частота. Центростремительное ускорение

Технические устройства и практическое применение: спидометр, движение снарядов, цепные и ремённые передачи.

 

 

Практические работы:

1. Измерение мгновенной скорости неравномерного движения;

2. Исследование соотношения между путями, пройденными телом за последовательные равные промежутки времени при равноускоренном движении;

3. Измерение ускорения движения шарика в вязкой жидкости.

 

 

Внеаудиторная (самостоятельная) работа обучающихся: Технические устройства и практическое применение: спидометр, движение снарядов, цепные и ремённые передачи.

1

 

 

Динамика (6 ч)

   

Содержание учебного материала:

6

ОК.02,ОК.04, ОК.05,ОК.06,ОК.07

 

Тема урока (теоретическая подготовка):

Принцип относительности Галилея. Первый закон Ньютона. Инерциальные системы отсчёта. Масса тела. Сила. Принцип суперпозиции сил. Второй закон Ньютона для материальной точки. Третий закон Ньютона для материальных точек. Закон всемирного тяготения. Сила тяжести. Первая космическая скорость. Вес тела. Сила упругости. Закон Гука. Сила трения. Сухое трение. Сила трения скольжения и сила трения покоя. Коэффициент трения. Сила сопротивления при движении тела в жидкости или газе. Поступательное и вращательное движение абсолютно твёрдого тела. Момент силы относительно оси вращения. Плечо силы. Условия равновесия твёрдого тела

Технические устройства и практическое применение: подшипники, движение искусственных спутников.

 

 

Практические работы:

1. Исследование зависимости силы упругости от деформации пружины и резинового образца;

2. Изучение движения бруска по наклонной плоскости под действием нескольких сил;

3. Исследование условий равновесия твёрдого тела, имеющего ось вращения.

 

 

 

Внеаудиторная (самостоятельная) работа обучающихся: Технические устройства и практическое применение: подшипники, движение искусственных спутников.

1

 

 

Законы сохранения в механике (6 ч)

Содержание учебного материала:

 

6

ОК.02,ОК.04, ОК.05,ОК.06,ОК.07

 

Тема урока (теоретическая подготовка):

Импульс материальной точки (тела), системы материальных точек. Импульс силы и изменение импульса тела. Закон сохранения импульса. Реактивное движение. Работа силы. Мощность силы. Кинетическая энергия материальной точки. Теорема об изменении кинетической энергии. Потенциальная энергия. Потенциальная энергия упруго деформированной пружины. Потенциальная энергия тела вблизи поверхности Земли. Потенциальные и не потенциальные силы. Связь работы не потенциальных сил с изменением механической энергии системы тел. Закон сохранения механической энергии. Упругие и неупругие столкновения.

Технические устройства и практическое применение: водомёт, копёр, пружинный пистолет, движение ракет.

 

 

Практические работы:

1. Измерение импульса тела, брошенного горизонтально;

2. Исследование связи работы силы с изменением механической энергии тела.

 

 

 

Внеаудиторная (самостоятельная) работа обучающихся:

Технические устройства и практическое применение: водомёт, копёр, пружинный пистолет, движение ракет.

-

 

 

РАЗДЕЛ 3. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА (14 ч)

 

Основы молекулярно-кинетической теории (6 ч)

Содержание учебного материала:

 

6

ОК.02,ОК.04, ОК.05,ОК.06,ОК.07

 

Тема урока (теоретическая подготовка):

Основные положения молекулярно-кинетической теории. Броуновское движение. Диффузия. Характер движения и взаимодействия частиц вещества. Модели строения газов, жидкостей и твёрдых тел и объяснение свойств вещества на основе этих моделей. Масса молекул. Количество вещества. Постоянная Авогадро. Тепловое равновесие. Температура и её измерение. Шкала температур Цельсия. Модель идеального газа. Основное уравнение молекулярно-кинетической теории идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частиц газа. Газовые законы. Уравнение Менделеева—Клапейрона. Закон Дальтона. Изопроцессы в идеальном газе с постоянным количеством вещества: изотерма, изохора, изобара

Технические устройства и практическое применение: термометр, барометр

 

 

Практические работы

1. Измерение массы воздуха в классной комнате;

2. Исследование зависимости между параметрами состояния разреженного газа.

 

 

Внеаудиторная (самостоятельная) работа обучающихся:

Технические устройства и практическое применение: термометр, барометр

1

 

Основы термодинамики (6 ч)

Содержание учебного материала:

 

6

ОК.02,ОК.04, ОК.05,ОК.06,ОК.07

 

Тема урока (теоретическая подготовка):

Термодинамическая система. Внутренняя энергия термодинамической системы и способы её изменения. Количество теплоты и работа. Внутренняя энергия одноатомного идеального газа. Виды теплопередачи: теплопроводность, конвекция, излучение. Удельная теплоёмкость вещества. Количество теплоты при теплопередаче. Понятие об адиабатном процессе. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Графическая интерпретация работы газа.

Тепловые машины. Принципы действия тепловых машин. Преобразования энергии в тепловых машинах. КПД тепловой машины. Цикл Карно и его КПД. Второй закон термодинамики. Необратимость процессов в природе. Тепловые двигатели. Экологические проблемы теплоэнергетики

Технические устройства и практическое применение: двигатель внутреннего сгорания, бытовой холодильник, кондиционер.

 

 

Практические работы

1. Измерение удельной теплоёмкости вещества.

 

 

Внеаудиторная (самостоятельная) работа обучающихся:

Технические устройства и практическое применение: двигатель внутреннего сгорания, бытовой холодильник, кондиционер.

1

 

Агрегатные состояния вещества. Фазовые переходы (2 ч)

Содержание учебного материала:

 

2

ОК.02,ОК.04, ОК.05,ОК.06,ОК.07

 

Тема урока (теоретическая подготовка):

Парообразование и конденсация. Испарение и кипение. Влажность воздуха. Насыщенный пар. Удельная теплота парообразования. Зависимость температуры кипения от давления. Твёрдое тело. Кристаллические и аморфные тела. Анизотропия свойств кристаллов. Жидкие кристаллы. Современные материалы. Плавление и кристаллизация. Удельная теплота плавления. Уравнение теплового баланса

Технические устройства и практическое применение: гигрометр и психрометр, калориметр, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологии.

 

 

Практические работы

1. Измерение влажности воздуха.

 

 

Внеаудиторная (самостоятельная) работа обучающихся:

Технические устройства и практическое применение: гигрометр и психрометр, калориметр, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологий

1

 

 

 

 

 

 

РАЗДЕЛ 4. ЭЛЕКТРОДИНАМИКА (10 ч)

 

Электростатика (4 ч)

Содержание учебного материала:

4

ОК.01, ОК.02,ОК.04, ОК.05,ОК.06,ОК.07, ОК.09

 

Тема урока (теоретическая подготовка):

Электризация тел. Электрический заряд. Два вида электрических зарядов. Проводники, диэлектрики и полупроводники. Закон сохранения электрического заряда. Взаимодействие зарядов. Закон Кулона. Электрическое поле. Напряжённость электрического поля. Принцип суперпозиции. Линии напряжённости электрического поля. Работа сил электростатического поля. Потенциал. Разность потенциалов. Проводники и диэлектрики в электростатическом поле. Диэлектрическая проницаемость. Электроёмкость. Конденсатор. Электро- ёмкость плоского конденсатора. Энергия заряженного конденсатора

Технические устройства и практическое применение: электроскоп, электрометр, электростатическая защита, заземление электроприборов, конденсатор, ксерокс, струйный принтер.

 

 

Практические работы

1. Измерение электроёмкости конденсатора.

 

 

Внеаудиторная (самостоятельная) работа обучающихся:

Технические устройства и практическое применение: электроскоп, электрометр, электростатическая защита, заземление электроприборов, конденсатор, ксерокс, струйный принтер.

-

 

 

Постоянный электрический ток. Токи в различных средах (6 ч)

Содержание учебного материала:

 

6

ОК.01, ОК.02,ОК.04, ОК.05,ОК.06,ОК.07, ОК.09

 

Тема урока (теоретическая подготовка):

Электрический ток. Условия существования электрического тока. Источники тока. Сила тока. Постоянный ток. Напряжение. Закон Ома для участка цепи.

Электрическое сопротивление. Удельное сопротивление вещества. Последовательное, параллельное, смешанное соединение проводников. Работа электрического тока. Закон Джоуля—Ленца. Мощность электрического тока. ЭДС и внутреннее сопротивление источника тока. Закон Ома для полной (замкнутой) электрической цепи. Электронная проводимость твёрдых металлов. Зависимость сопротивления металлов от температуры. Сверхпроводимость. Электрический ток в вакууме. Свойства электронных пучков. Полупроводники. Собственная и примесная проводимость полупроводников. Свойства p—n-перехода. Полупроводниковые приборы. Электрический ток в растворах и расплавах электролитов. Электролитическая диссоциация. Электролиз. Электрический ток в газах. Самостоятельный и несамостоятельный разряд. Молния. Плазма

Технические устройства и практическое применение: амперметр, вольтметр, реостат, источники тока, электронагревательные приборы, электроосветительные приборы, термометр сопротивления, вакуумный диод, электронно-лучевая трубка, термисторы и фоторезисторы, полупроводниковый диод, гальваника.

 

 

Практические работы

1. Изучение смешанного соединения резисторов; 2. Измерение ЭДС источника тока и его внутреннего сопротивления;

3. Наблюдение электролиза.

 

 

Внеаудиторная (самостоятельная) работа обучающихся:

Технические устройства и практическое применение: амперметр, вольтметр, реостат, источники тока, электронагревательные приборы, электроосветительные приборы, термометр сопротивления, вакуумный диод, электронно-лучевая трубка, термисторы и фоторезисторы, полупроводниковый диод, гальваника.

-

 

 

РАЗДЕЛ 4. ЭЛЕКТРОДИНАМИКА (6 ч)

 

Магнитное поле. Электромагнитная индукция (6 ч)

Содержание учебного материала:

 

6

ОК.01, ОК.02,ОК.04, ОК.05,ОК.06,ОК.07, ОК.09

 

Тема урока (теоретическая подготовка):

Постоянные магниты. Взаимодействие постоянных магнитов. Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции. Линии магнитной индукции. Картина линий магнитной индукции поля постоянных магнитов. Магнитное поле проводника с током. Картина линий индукции магнитного поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током. Опыт Эрстеда. Взаимодействие проводников с током. Сила Ампера, её модуль и направление. Сила Лоренца, её модуль и направление. Движение заряженной частицы в однородном магнитном поле. Работа силы Лоренца. Явление электромагнитной индукции. Поток вектора магнитной индукции. ЭДС индукции. Закон электромагнитной индукции Фарадея. Вихревое электрическое поле. ЭДС индукции в проводнике, движущемся поступательно в однородном магнитном поле. Правило Ленца.

Индуктивность. Явление самоиндукции. ЭДС самоиндукции. Энергия магнитного поля катушки с током. Электромагнитное поле

Технические устройства и практическое применение: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных частиц, индукционная печь.

 

 

Практические работы

1. Изучение магнитного поля проводника с током;

2. Исследование действия постоянного магнита на рамку с током;

3. Исследование явления электромагнитной индукции.

 

 

Внеаудиторная (самостоятельная) работа обучающихся:

Технические устройства и практическое применение: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных частиц, индукционная печь.

-

 

 

РАЗДЕЛ 5. КОЛЕБАНИЯ И ВОЛНЫ (16 ч)

 

Механические и электромагнитные колебания (4 ч)

Содержание учебного материала:

 

4

 

 

Тема урока (теоретическая подготовка):

Колебательная система. Свободные механические колебания. Гармонические колебания. Период, частота, амплитуда и фаза колебаний. Пружинный маятник. Математический маятник. Уравнение гармонических колебаний. Кинематическое и динамическое описание колебательного движения. Превращение энергии при гармонических колебаниях. Связь амплитуды колебаний исходной величины с амплитудами колебаний её скорости и ускорения. Колебательный контур. Свободные электромагнитные колебания в идеальном колебательном контуре. Аналогия между механическими и электромагнитными колебаниями. Формула Томсона. Закон сохранения энергии в идеальном колебательном контуре.

Вынужденные механические колебания. Резонанс. Вынужденные электромагнитные колебания. Переменный ток. Синусоидальный переменный ток. Мощность переменного тока. Амплитудное и действующее значение силы тока и напряжения. Трансформатор. Производство, передача и потребление электрической энергии. Экологические риски при производстве электроэнергии. Культура использования электроэнергии в повседневной жизни

Технические устройства и практическое применение: электрический звонок, генератор переменного тока, линии электропередач.

 

ОК.01, ОК.02,ОК.04, ОК.05,ОК.06,ОК.07, ОК.09

 

Практические работы

1. Исследование зависимости периода малых колебаний математического маятника от параметров колебательной системы;

2. Исследование переменного тока в цепи из последовательно соединённых конденсатора, катушки и лампочки.

 

 

Внеаудиторная (самостоятельная) работа обучающихся:

Технические устройства и практическое применение: электрический звонок, генератор переменного тока, линии электропередач.

-

 

 

Механические и электромагнитные волны (4 ч)

Содержание учебного материала:

 

4

ОК.01, ОК.02,ОК.04, ОК.05,ОК.06,ОК.07, ОК.09

 

Тема урока (теоретическая подготовка):

Механические волны, условия распространения. Период. Скорость распространения и длина волны. Поперечные и про- дольные волны. Интерференция и дифракция механических волн. Звук. Скорость звука. Громкость звука. Высота тона. Тембр звука. Электромагнитные волны. Условия излучения электромагнитных волн. Взаимная ориентация векторов E, B, v в электромагнитной волне. Свойства электромагнитных волн: отражение, преломление, поляризация, дифракция, интерференция. Скорость электромагнитных волн. Шкала электромагнитных волн. Применение электромагнитных волн в технике и быту. Принципы радиосвязи и телевидения. Радиолокация. Электромагнитное загрязнение окружающей среды

Технические устройства и практическое применение: музыкальные инструменты, ультразвуковая диагностика в технике и медицине, радар, радиоприёмник, телевизор, антенна, телефон, СВЧ-печь.

 

 

Внеаудиторная (самостоятельная) работа обучающихся:

Технические устройства и практическое применение: музыкальные инструменты, ультразвуковая диагностика в технике и медицине, радар, радиоприёмник, телевизор, антенна, телефон, СВЧ-печь.

-

 

 

Оптика (8 ч)

Содержание учебного материала:

 

8

ОК.01,ОК.02,ОК.04, ОК.05,ОК.06,ОК.07

 

Тема урока (теоретическая подготовка):

Геометрическая оптика. Прямолинейное распространение света в однородной среде. Луч света. Отражение света. Законы отражения света. Построение изображений в плоском зеркале. Преломление света. Законы преломления света. Абсолютный показатель преломления. Полное внутреннее отражение. Предельный угол полного внутреннего отражения. Дисперсия света. Сложный состав белого света. Цвет. Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы. Построение изображений в собирающих и рассеивающих линзах. Формула тонкой линзы. Увеличение, даваемое линзой. Пределы применимости геометрической оптики.

Волновая оптика. Интерференция света. Когерентные источники. Условия наблюдения максимумов и минимумов в интерференционной картине от двух синфазных когерентных источников. Дифракция света. Дифракционная решётка. Условие наблюдения главных максимумов при падении монохроматического света на дифракционную решётку. Поляризация света

Технические устройства и практическое применение: очки, лупа, фотоаппарат, проекционный аппарат, микроскоп, телескоп, волоконная оптика, дифракционная решётка, поляроид.

 

 

 

Практические работы

1. Наблюдение дисперсии света;

2. Измерение показателя преломления стекла;

3. Исследование свойств изображений в линзах.

 

 

 

Внеаудиторная (самостоятельная) работа обучающихся:

Технические устройства и практическое применение: очки, лупа, фотоаппарат, проекционный аппарат, микроскоп, телескоп, волоконная оптика, дифракционная решётка, поляроид.

1

 

РАЗДЕЛ 6. ОСНОВЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ (2 ч)

 

Основы СТО (2 ч)

 

 

Содержание учебного материала:

 

2

ОК.02,ОК.04, ОК.05,ОК.06,ОК.07

 

Тема урока (теоретическая подготовка):

Границы применимости классической механики. Постулаты теории относительности: инвариантность модуля скорости света в вакууме, принцип относительности Эйнштейна. Относительность одновременности. Замедление времени и сокращение длины. Энергия и импульс свободной частицы. Связь массы с энергией и импульсом свободной частицы. Энергия покоя свободной частицы

 

 

 

 

РАЗДЕЛ 7. КВАНТОВАЯ ФИЗИКА (12 ч)

 

Элементы квантовой оптики (4 ч)

 

Содержание учебного материала:

 

4

ОК.01,ОК.02,ОК.04, ОК.05,ОК.06,ОК.07, ОК.09

 

Тема урока (теоретическая подготовка):

Фотоны. Формула Планка связи энергии фотона с его частотой. Энергия и импульс фотона.

Открытие и исследование фотоэффекта. Опыты А. Г. Столетова. Законы фотоэффекта. Уравнение Эйнштейна для фотоэффекта. «Красная граница» фотоэффекта. Давление света. Опыты П. Н. Лебедева

Технические устройства и практическое применение: фотоэлемент, фотодатчик, солнечная батарея, светодиод.

 

 

 

Практические работы:

1. Наблюдение линейчатого спектра.

 

 

 

Внеаудиторная (самостоятельная) работа обучающихся:

Технические устройства и практическое применение: фотоэлемент, фотодатчик, солнечная батарея, светодиод.

-

 

Строение атома (4 ч)

Содержание учебного материала:

 

4

ОК.01, ОК.02,ОК.04, ОК.05,ОК.06,ОК.07, ОК.09

 

Тема урока (теоретическая подготовка):

Модель атома Томсона. Опыты Резерфорда по рассеянию α-частиц. Планетарная модель атома. Постулаты Бора. Излучение и поглощение фотонов при переходе атома с одного уровня энергии на другой. Линейчатые спектры. Спектр уровней энергии атома водорода. Дальнейшее развитие квантовой теории в трудах Э. Шрёдингера и В. Гейзенберга. Волновые свойства частиц. Волны де Бройля. Корпускулярно-волновой дуализм. Дифракция электронов на кристаллах. Спонтанное и вынужденное излучение. Устройство и принцип работы лазера

Технические устройства и практическое применение: спектральный анализ (спектроскоп), лазер, квантовый компьютер.

 

 

Внеаудиторная (самостоятельная) работа обучающихся:

Технические устройства и практическое применение: спектральный анализ (спектроскоп), лазер, квантовый компьютер.

-

 

Атомное ядро (4 ч)

Содержание учебного материала:

 

4

ОК.02,ОК.04, ОК.05,ОК.6,ОК.07

 

Тема урока (теоретическая подготовка):

Эксперименты, доказывающие сложность строения ядра. Открытие радиоактивности. Опыты Резерфорда по определению состава радиоактивного излучения. Свойства альфа-, бета-, гамма-излучения. Влияние радиоактивности на живые организмы. Открытие протона и нейтрона. Нуклонная модель ядра Гейзенберга—Иваненко. Заряд ядра. Массовое число ядра. Изотопы. Альфа-распад. Электронный и позитронный бета-распад. Гамма-излучение. Закон радиоактивного распада. Энергия связи нуклонов в ядре. Ядерные силы. Дефект массы ядра. Ядерные реакции. Деление и синтез ядер. Ядерный реактор. Термоядерный синтез. Проблемы и перспективы ядерной энергетики. Экологические аспекты ядерной энергетики. Элементарные частицы. Открытие позитрона. Методы наблюдения и регистрации элементарных частиц. Фундаментальные взаимодействия. Единство физической картины мира

Технические устройства и практическое применение: дозиметр, камера Вильсона, ядерный реактор, атомная бомба.

 

 

Практические работы:

1. Исследование треков частиц (по готовым фотографиям).

 

 

 

 

Внеаудиторная (самостоятельная) работа обучающихся:

Технические устройства и практическое применение: дозиметр, камера Вильсона, ядерный реактор, атомная бомба.

-

 

РАЗДЕЛ 8. ЭЛЕМЕНТЫ АСТРОФИЗИКИ (2 ч)

 

Элементы астрофизики (2 ч)

Содержание учебного материала:

 

2

ОК.02,ОК.04, ОК.05,ОК.06,ОК.07

 

Тема урока (теоретическая подготовка):

Вид звёздного неба. Созвездия, яркие звёзды, планеты, их видимое движение. Солнечная система. Планеты земной группы. Планеты-гиганты и их спутники, карликовые планеты. Малые тела Солнечной системы. Солнце, фотосфера и атмосфера. Солнечная активность. Источник энергии Солнца и звёзд. Внутреннее строение Солнца. Условие равновесия в Солнце. Температура в центре Солнца. Перенос энергии из центра Солнца. Солнечные нейтрино. Звёзды, их основные характеристики: масса, светимость, радиус, температура, их взаимосвязь. Диаграмма «спектральный класс — светимость». Звёзды главной последовательности. Зависимость «масса — светимость» для звёзд главной последовательности. Внутреннее строение звёзд. Современные представления о происхождении и эволюции Солнца и звёзд. Этапы жизни звёзд. Млечный Путь — наша Галактика. Спиральная структура Галактики, распределение звёзд, газа, пыли. Положение и движение Солнца в Галактике. Плоская и сферическая подсистемы Галактики. Типы галактик. Радиогалактики и квазары. Чёрные дыры в ядрах галактик.

Вселенная. Расширение Вселенной. Закон Хаббла. Разбегание галактик. Возраст и радиус Вселенной, теория Большого взрыва. Модель «горячей Вселенной». Реликтовое излучение. Роль астрономии в познании природы. Масштабная структура Вселенной. Метагалактика

 

 

 

ОБОБЩАЮЩЕЕ ПОВТОРЕНИЕ (2 ч)

 

Систематизация и обобщение материала курса физики (2 ч)

Содержание учебного материала:

 

2

ОК.02,ОК.04, ОК.05,ОК.06,ОК.07

 

Тема урока (теоретическая подготовка):

Роль физики и астрономии в экономической, технологической, социальной и этической сферах деятельности человека; роль и место физики и астрономии в современной научной картине мира; роль физической теории в формировании представлений о физической картине мира, место физической картины мира в общем ряду современных естественно-научных представлений о природе

 

 

 

Дифференцированный зачёт

 

 

 

 

Консультации

-

 

 

Всего:

 

84

 

 

 

 


 

 

Приложение 1

 

Темы проектов в соответствии с требованиями ФГОС СОО

 

 № п/п

Тема  индивидуального проекта

1.

Александр Григорьевич Столетов — русский физик.

2.

Александр Степанович Попов — русский ученый, изобретатель радио.

3.

Альтернативная энергетика.

4.

Акустические свойства полупроводников.

5.

Андре Мари Ампер — основоположник электродинамики.

6.

Асинхронный двигатель.

7.

Астероиды.

8.

Астрономия наших дней.

9.

Атомная физика. Изотопы. Применение радиоактивных изотопов.

10.

Бесконтактные методы контроля температуры.

11.

Биполярные транзисторы.

12.

Борис Семенович Якоби — физик и изобретатель.

13.

Величайшие открытия физики.

14.

Виды электрических разрядов. Электрические разряды на службе человека.

15.

Влияние дефектов на физические свойства кристаллов.

16.

Вселенная и темная материя.

17.

Галилео Галилей — основатель точного естествознания.

18.

Голография и ее применение.

19.

Движение тела переменной массы.

20.

Дифракция в нашей жизни.

21.

Жидкие кристаллы.

22.

Законы Кирхгофа для электрической цепи.

23.

Законы сохранения в механике.

24.

Значение открытий Галилея.

25.

Игорь Васильевич Курчатов — физик, организатор атомной науки и техники.

26.

Исаак Ньютон — создатель классической физики.

27.

Использование электроэнергии в транспорте.

28.

Классификация и характеристики элементарных частиц.

29.

Конструкционная прочность материала и ее связь со структурой.

30.

Конструкция и виды лазеров.

31.

Криоэлектроника (микроэлектроника и холод).

32.

Лазерные технологии и их использование.

33.

Леонардо да Винчи — ученый и изобретатель.

34.

Магнитные измерения (устройство приборов, принцип действия, способы измерения магнитного потока, магнитной индукции).

35.

Майкл Фарадей — создатель учения об электромагнитном поле.

36.

Макс Планк.

37.

Метод меченых атомов.

38.

Методы наблюдения и регистрации радиоактивных излучений и частиц.

39.

Методы определения плотности.

 

40. Михаил Васильевич Ломоносов — ученый энциклопедист.

41.

Модели атома. Опыт Резерфорда.

42.

Молекулярно-кинетическая теория идеальных газов.

43.

Молния — газовый разряд в природных условиях.

44.

Нанотехнология — междисциплинарная область фундаментальной и прикладной

 

науки и техники.

45.

Никола Тесла: жизнь и необычайные открытия.

46.

Николай Коперник — создатель гелиоцентрической системы мира.

47.

Нильс Бор — один из создателей современной физики.

48.

Нуклеосинтез во Вселенной.

49.

Объяснение фотосинтеза с точки зрения физики.

50.

Оптические явления в природе.

51.

Открытие и применение высокотемпературной сверхпроводимости.

52.

Переменный электрический ток и его применение.

53

Плазма — четвертое состояние вещества.

54.

Планеты Солнечной системы.

55.

Полупроводниковые датчики температуры.

56.

Применение жидких кристаллов в промышленности.

57.

Применение ядерных реакторов.

58.

Природа ферромагнетизма.

59.

Проблемы экологии, связанные с использованием тепловых машин.

60.

Производство, передача и использование электроэнергии.

61.

Происхождение Солнечной системы.

62.

Пьезоэлектрический эффект его применение.

63.

Развитие средств связи.

64.

Реактивные двигатели и основы работы тепловой машины.

65.

Реликтовое излучение.

66.

Рентгеновские лучи. История открытия. Применение.

67.

Рождение и эволюция звезд.

68.

Роль К.Э.Циолковского в развитии космонавтики.

69.

Свет — электромагнитная волна.

70.

Сергей Павлович Королев — конструктор и организатор производства ракетной

космической техники.

71.

Силы трения.

72.

Современная спутниковая связь.

73.

Современная физическая картина мира.

74.

Современные средства связи.

75.

Солнце — источник жизни на Земле.

76.

Трансформаторы.

77.

Ультразвук (получение, свойства, применение).

78.

Управляемый термоядерный синтез.

79.

Ускорители заряженных частиц.

80.

Физика и музыка.

81.

Физические свойства атмосферы.

82.

Фотоэлементы.

83.

Фотоэффект. Применение явления фотоэффекта.

84.

Ханс Кристиан Эрстед — основоположник электромагнетизма.

85.

Черные дыры.

86.

Шкала электромагнитных волн.

87.

Экологические проблемы и возможные пути их решения.

88.

Электронная проводимость металлов. Сверхпроводимость.

89.

Эмилий Христианович Ленц — русский физик.

90.

Физика и медицина.

91.

Биофизика.

92.

Лазеры и лазерная техника.

93.

Энергосбережение. Проблемы электроэнергетики.

94.

Традиционные источники тока.

95.

Нетрадиционные источники тока.

96.

Путешествие по созвездиям.

97.

Физика и музыкальные инструменты.

98.

Особенности строительства мостов.

99.

Гравитационные волны.

100.

Знаменательные открытия по физике 19 века.

101.

Знаменательные открытия по физике 20 века.

102.

Нобелевские лауреаты по физике.

103.

История развития освещения.

104.

Макет солнечной системы. Планеты Солнечной системы.

105.

Освоение космического пространства.

106.

В мире сплавов.

107.

Физическое явление - гроза.

108.

От лучины до электричества.

109.

Физическое явление - молния

110.

Роль атмосферного давления в жизни живых организмов.

111.

Простые механизмы в живой природе.

112.

Аппарат искусственного кровообращения.

113.

Процессы диффузии в живой природе.

114.

Биологическое действие ионизирующих излучений.

115.

Основы космонавтики. Принцип действия ракеты. Формула Циолковского.

116.

Многоступенчатые ракеты. Ракетные двигатели и топливо для них.

117.

Фотореле, автоматически открывающие двери (схема, работа).

118.

Автоматическое включение и выключение уличного освещения.

119.

Тёплый свет.

120.

Решение технической, экспериментальной задачи.

121.

Занимательные опыты по физике.

122.

Простые физические опыты из подручных средств.

123.

Реферат об учёном физике на английском языке с переводчиком.

124.

Газета по физике на иностранном языке с переводом.

125.

Разработка «Своя игра» (компьютерная презентация).

126.

Разработка «Викторина по физике» (компьютерная презентация).

127.

Кроссворд по физике (компьютерная презентация).

128.

Стихи и проза о физических явлениях.

129.

Рассказ о физическом явлении в стихах.

130.

Моя шпаргалка по теме……..

131.

Опорный конспект по теме…….

132.

Определение средней плотности тела человека.

133.

Путешествие по созвездиям.

134.

История развития освещения.

135.

Основы телевидения.

136.

Телевидение вчера, сегодня и завтра.

 

 

 

 

 

 

 

 

 

 


 

Скачано с www.znanio.ru

Кировское областное государственное профессиональное образовательное автономное учреждение

Кировское областное государственное профессиональное образовательное автономное учреждение

Составитель: Фамилия, имя, отчество

Составитель: Фамилия, имя, отчество

ОГЛАВЛЕНИЕ 1. ОБЩАЯ

ОГЛАВЛЕНИЕ 1. ОБЩАЯ

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ 1

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ 1

Для учета специфики получаемой профессии/специальности в рабочую программу общеобразовательного предмета включается профессионально-ориентированное содержание

Для учета специфики получаемой профессии/специальности в рабочую программу общеобразовательного предмета включается профессионально-ориентированное содержание

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ Познавательные универсальные учебные действия

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ Познавательные универсальные учебные действия

Коммуникативные универсальные учебные действия: - осуществлять общение на уроках физики и во вне­урочной деятельности; - распознавать предпосылки конфликтных ситуаций и смягчать конфликты; - развёрнуто и…

Коммуникативные универсальные учебные действия: - осуществлять общение на уроках физики и во вне­урочной деятельности; - распознавать предпосылки конфликтных ситуаций и смягчать конфликты; - развёрнуто и…

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ: К концу обучения в 10 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений: демонстрировать на примерах роль и место…

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ: К концу обучения в 10 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений: демонстрировать на примерах роль и место…

К концу обучения в 11 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений: демонстрировать на примерах роль и место физики в…

К концу обучения в 11 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений: демонстрировать на примерах роль и место физики в…

Ампера, сила Лоренца, индуктивность катушки, энергия электрического и магнитного полей, период и частота колебаний в колебательном контуре, заряд и сила тока в процессе гармонических электромагнитных…

Ампера, сила Лоренца, индуктивность катушки, энергия электрического и магнитного полей, период и частота колебаний в колебательном контуре, заряд и сила тока в процессе гармонических электромагнитных…

ОБЪЕМ, СОДЕРЖАНИЕ ОБЩЕОБРАЗОВАТЕЛЬНОГО

ОБЪЕМ, СОДЕРЖАНИЕ ОБЩЕОБРАЗОВАТЕЛЬНОГО

Криволинейное движение. Движение материальной точки по окружности с постоянной по модулю скоростью

Криволинейное движение. Движение материальной точки по окружности с постоянной по модулю скоростью

Кинетическая энергия материальной точки

Кинетическая энергия материальной точки

Тепловые машины. Принципы действия тепловых машин

Тепловые машины. Принципы действия тепловых машин

Электростатическая защита. Диэлектрики в электростатическом поле

Электростатическая защита. Диэлектрики в электростатическом поле

Математика: решение системы уравнений, линейная функция, парабола, гипербола, их графики и свойства, тригонометрические функции: синус, косинус, тангенс, котангенс, основное тригонометрическое тождество, векторы и их проекции…

Математика: решение системы уравнений, линейная функция, парабола, гипербола, их графики и свойства, тригонометрические функции: синус, косинус, тангенс, котангенс, основное тригонометрическое тождество, векторы и их проекции…

Изучение магнитного поля катушки с током

Изучение магнитного поля катушки с током

Демонстрации Образование и распространение поперечных и продольных волн

Демонстрации Образование и распространение поперечных и продольных волн

Фотоны. Формула Планка связи энергии фотона с его частотой

Фотоны. Формула Планка связи энергии фотона с его частотой

Вид звёздного неба. Созвездия, яркие звёзды, планеты, их видимое движение

Вид звёздного неба. Созвездия, яркие звёзды, планеты, их видимое движение

РАЗДЕЛ 1. ФИЗИКА И МЕТОДЫ НАУЧНОГО

РАЗДЕЛ 1. ФИЗИКА И МЕТОДЫ НАУЧНОГО

Технические устройства и практическое применение: спидометр, движение снарядов, цепные и ремённые передачи

Технические устройства и практическое применение: спидометр, движение снарядов, цепные и ремённые передачи

Работа силы. Мощность силы. Кинетическая энергия материальной точки

Работа силы. Мощность силы. Кинетическая энергия материальной точки

Технические устройства и практическое применение: термометр, барометр1

Технические устройства и практическое применение: термометр, барометр1

Технические устройства и практическое применение: гигрометр и психрометр, калориметр, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологий 1

Технические устройства и практическое применение: гигрометр и психрометр, калориметр, технологии получения современных материалов, в том числе наноматериалов, и нанотехнологий 1

Свойства p—n-перехода. Полупроводниковые приборы

Свойства p—n-перехода. Полупроводниковые приборы

Технические устройства и практическое применение: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных частиц, индукционная печь

Технические устройства и практическое применение: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных частиц, индукционная печь

Исследование переменного тока в цепи из последовательно соединённых конденсатора, катушки и лампочки

Исследование переменного тока в цепи из последовательно соединённых конденсатора, катушки и лампочки

Формула тонкой линзы. Увеличение, даваемое линзой

Формула тонкой линзы. Увеличение, даваемое линзой

Наблюдение линейчатого спектра

Наблюдение линейчатого спектра

Технические устройства и практическое применение: дозиметр, камера

Технические устройства и практическое применение: дозиметр, камера

Тема урока (теоретическая подготовка):

Тема урока (теоретическая подготовка):

Приложение 1 Темы проектов в соответствии с требованиями

Приложение 1 Темы проектов в соответствии с требованиями

Молекулярно-кинетическая теория идеальных газов

Молекулярно-кинетическая теория идеальных газов

Эмилий Христианович Ленц — русский физик

Эмилий Христианович Ленц — русский физик

РАБОЧАЯ ПРОГРАММА ОБЩЕОБРАЗОВАТЕЛЬНОГО УЧЕБНОГО ПРЕДМЕТА ОУП.06 «ФИЗИКА»

РАБОЧАЯ ПРОГРАММА  ОБЩЕОБРАЗОВАТЕЛЬНОГО УЧЕБНОГО ПРЕДМЕТА  ОУП.06 «ФИЗИКА»
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
14.11.2024