ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Рабочая программа учебного курса математики для 10 класса составлена в соответствии с федеральным компонентом Государственного стандарта среднего (полного) общего образования; на основе Основной образовательной программы среднего общего образования МКОУ Новопогореловская СОШ; Программы общеобразовательных учреждений: Математика 10-11 классы, - М.Просвещение, 2009.
Общая характеристика учебного предмета.
При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа».
В рамках указанных содержательных линий решаются следующие задачи:
Ø систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
Ø расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
Ø развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления.
Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:
· формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
· развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
· овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
· воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.
В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:
¨ построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;
¨ выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;
¨ самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;
¨ самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.
¨ построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;
¨ выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;
¨ проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;
Место предмета в учебном плане
Математика в 10 классе I полугодие и II полугодие – 5 ч в неделю, всего 175 ч. В связи с праздничными днями программа скорректирована на 170 часов (23 февраля, 8 марта, 2, 9, 10 мая)
Учебная деятельность осуществляется при использовании учебно-методического комплекта:
1. Алгебра и начала анализа: учебник для 10 класса, общеобразовательных учр.: базовый и проф. уровни/ С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин, М.: Просвещение, 2013,-432с.
2. Геометрия: Учебник для 10-11 кл. общеобразовательных учреждений / Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. - М.: Просвещение, 2013.
3. Алгебра и начала анализа: дидактические материалы для 10 класса/ М. К. Потапов, А. В. Шевкин - М.; Просвещение, 2013.
СОДЕРЖАНИЕ УЧЕБНОГО КУРСА.
1. Действительные числа
Понятие натурального числа. Множества чисел. Свойства действительных чисел. Перестановки. Размещения. Сочетания.
Основная цель — систематизировать известные и изучить новые сведения о действительных числах.
Знать понятие «Перестановки. Размещения. Сочетания»;
Уметь находить разницу между ними и научиться применять их при решении задач.
2. Рациональные уравнения и неравенства
Рациональные выражения. Формулы бинома Ньютона, суммы и разности степеней. Рациональные уравнения. Системы рациональных уравнений. Метод интервалов решения неравенств. Рациональные неравенства. Нестрогие неравенства. Системы рациональных неравенств.
Основная цель — сформировать умения решать рациональные уравнения и неравенства.
Знать формулы бинома Ньютона, и разности степеней.
Уметь решать рациональные уравнения и их системы; применять метод интервалов для решения несложных рациональных неравенств и их систем.
3. Введение
Предмет стереометрии. Основные понятия стереометрии (точка, прямая, плоскость, пространство) и аксиомы стереометрии. Первые следствия из аксиом.
4. Параллельность прямых и плоскостей
Пересекающиеся, параллельные и скрещивающиеся прямые. Параллельность прямой и плоскости, признак и свойства. Угол между прямыми в пространстве. Перпендикулярность прямых.
Параллельность плоскостей, признаки и свойства. Параллельное проектирование. Изображение пространственных фигур. Тетраэдр и параллелепипед, куб. Сечения куба, призмы, пирамиды.
5. Корень степени n
Понятия функции и ее графика. Функция у = хn. Понятие корня степени n. Корни четной и нечетной степеней. Арифметический корень. Свойства корней степени n. Функция
у = .
Основная цель — освоить понятия корня степени n и арифметического корня; выработать умение преобразовывать выражения, содержащие корни степени n.
Знать определение корня п-ой степени, понятие функции и ее графика, арифметического корня п-ой степени и его свойства.
Уметь находить значение корня на основе определения и свойств, выполнять преобразования выражений, содержащие корни, строить график функции у = .
6. Степень положительного числа
Понятие и свойства степени с рациональным показателем. Предел последовательности.
Бесконечно убывающая геометрическая прогрессия. Число е.
Понятие степени с иррациональным показателем. Показательная функция.
Основная цель – усвоить понятие рациональной и иррациональной степеней положительного числа и показательной функции.
Знать определение степени с действительным показателем, определение показательной функции, формулу суммы бесконечной геометрической прогрессии;
уметь находить значение степени, упрощать выражения, содержащие степень, строить график показательной функции.
7. Перпендикулярность прямых и плоскостей
Перпендикулярность прямой и плоскости, признаки и свойства. Перпендикуляр и наклонная. Теорема о трех перпендикулярах. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми. Перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла. Площадь ортогональной проекции многоугольника.
8. Логарифмы
Понятие и свойства логарифмов. Логарифмическая функция. Десятичный логарифм (приближенные вычисления). Степенные функции.
Основная цель — освоить понятия логарифма и логарифмической функции, выработать умение преобразовывать выражения, содержащие логарифмы.
Знать определение логарифма, свойства;
Уметь строить график логарифмической функции, находить значения логарифмических выражений, применять свойства логарифмов для преобразования логарифмических выражений.
9. Показательные и логарифмические уравнения и неравенства
Простейшие показательные и логарифмические уравнения. Уравнения, сводящиеся к простейшим заменой неизвестного. Простейшие показательные и логарифмические неравенства. Неравенства, сводящиеся к простейшим заменой неизвестного.
Основная цель — сформировать умение решать показательные и логарифмические уравнения и неравенства.
Знать определение логарифмических и показательных уравнений и неравенств, приемы решения простейших их уравнений и неравенств;
уметь решать показательные и логарифмические уравнения и неравенства.
10. Многогранники
Понятие многогранника, вершины, ребра, грани многогранника. Развертка. Многогранные углы Выпуклые многогранники. Теорема Эйлера. Призма, ее основание, боковые ребра, высота, боковая и полная поверхности.Прямая и наклонная призма. Правильная призма. Пирамида, ее основание, боковые ребра, высота, боковая и полная поверхности. Треугольная пирамида. Правильная пирамида. Усеченная пирамида. Симметрия в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая и зеркальная). Примеры симметрий в окружающем мире. Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).
11. Синус и косинус угла
Понятие угла и его меры. Определение синуса и косинуса угла, основные формулы для них. Арксинус и арккосинус.
Основная цель — освоить понятия синуса и косинуса произвольного угла, изучить свойства функций угла: sin и cos .
Знать определение синуса, косинуса, радиана, арксинуса, арккосинуса, основные формулы тригонометрии;
Уметь выражать радианную меру угла в градусную и наоборот, находить значение синуса, косинуса любого угла, преобразовывать тригонометрические выражения, используя основные формулы, находить значения арксинусов и арккосинусов.
12. Тангенс и котангенс угла
Определения тангенса и котангенса угла и основные формулы для них. Арктангенс и арккотангенс.
Основная цель — освоить понятия тангенса и котангенса произвольного угла, изучить свойства функций угла: tg и ctg.
Знать определение тангенса и котангенса, арктангенса и арккотангенса; основные формулы для них;
Уметь находить значения тангенса и котангенса любого угла.
13. Формулы сложения
Косинус суммы (и разности) двух углов. Формулы для дополнительных углов. Синус суммы (и разности) двух углов. Сумма и разность синусов и косинусов. Формулы для двойных и половинных углов.
Основная цель — освоить формулы косинуса и синуса суммы и разности двух углов, выработать умение выполнять тождественные преобразования тригонометрических выражений с использованием выведенных формул.
Знать формулы сложения, двойных и половинных углов, формулы суммы и разности синусов и косинусов;
Уметь применять формулы тригонометрии для упрощения тригонометрических выражений и вычислений .
14. Векторы в пространстве
Понятие вектора в пространстве. Модуль вектора. Равенство векторов. Сложение и вычитание векторов. Коллинеарные векторы. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение вектора по трем некомпланарным векторам.
15. Тригонометрические функции числового аргумента
Функции у = sin х , у = cos x, у = tg x, у = ctg x.
Основная цель — изучить свойства основных тригонометрических функций и их графиков.
Знать определение тригонометрических функций их свойства;
Уметь строить графики тригонометрических функций, определять их период.
16. Тригонометрические уравнения и неравенства
Простейшие тригонометрические уравнения. Тригонометрические уравнения, сводящиеся к простейшим заменой неизвестного. Применение основных тригонометрических формул для решения уравнений. Однородные уравнения.
Основная цель — сформировать умение решать тригонометрические уравнения и неравенства.
Знать формулы корней простейших тригонометрических уравнений, основные приемы решения тригонометрических уравнений;
Уметь решать простейшие тригонометрические уравнения.
17. Вероятность события
Понятие и свойства вероятности события.
Основная цель — овладеть классическим понятием вероятности события, изучить его свойства и научиться применять их при решении несложных задач.
18. Повторение курса алгебры и начал математического анализа
Тематический план
№ п/п |
Раздел |
Количество часов |
Контрольные работы |
1 |
Повторение |
2 |
1 |
2 |
Действительные числа |
7 |
|
3 |
Рациональные уравнения и неравенства |
14 |
1 |
4 |
Введение |
4 |
|
5 |
Параллельность прямых и плоскостей |
18 |
2 |
6 |
Корень степени n |
8 |
|
7 |
Степень положительного числа |
9 |
1 |
8 |
Перпендикулярность прямых и плоскостей |
18 |
1 |
9 |
Логарифмы |
6 |
|
10 |
Показательные и логарифмические уравнения и неравенства |
7 |
|
11 |
Многогранники |
11 |
1 |
12 |
Синус и косинус угла |
7 |
|
13 |
Тангенс и котангенс угла |
4 |
|
14 |
Формулы сложения |
10 |
|
15 |
Векторы в пространстве |
7 |
1 |
16 |
Тригонометрические функции числового аргумента |
8 |
1 |
17 |
Тригонометрические уравнения и неравенства |
8 |
1 |
18 |
Вероятность события |
4 |
|
19 |
Повторение курса математики 10 класса |
11
|
1 |
всего |
|
170 |
6 |
КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
№ урока |
Дата (план/факт) |
Название изучаемой темы |
Круг изучаемых вопросов |
Домашнее задание |
Примечание |
|
||||
1 |
|
Повторение. Преобразование рациональных выражений. Уравнения и неравенства. Квадратичная функция. Прогрессии. |
|
Работа по карточкам |
|
|||||
2 |
|
Контрольная работа №1. Входной срез. |
|
|
|
|||||
Глава I. Корни. Степени. Логарифмы (51 час) |
||||||||||
§ 1. Действительные числа (7 часов)
|
|
|||||||||
3 |
|
Понятие действительного числа |
Понятие натурального числа. Понятие целого числа. Понятие рационального числа (понятие периодической дроби). Понятие иррационального числа. Понятие действительного числа. Запись действительного числа. Группы свойств действительных чисел: порядка; сложения и вычитания; умножения и деления; Архимедово свойство; свойство непрерывности. Отождествление действительных чисел с точками координатной оси. Утверждения взаимно-однозначного соответствия. |
|
|
|||||
|
|
|||||||||
4 |
|
|||||||||
5 |
|
Множества чисел. Свойства действительных чисел. |
Обозначения некоторых множеств (натуральных чисел, целых чисел, рациональных чисел, действительных чисел, отрезок, интервал, полуинтервал. Знаки принадлежности множеству. Понятие множества. Понятие пустого множества. Понятие подмножества. Объединение, пересечение множеств. Мощность множества. Свойство непрерывности действительных чисел. |
|
|
|||||
6 |
|
|
|
|||||||
7 |
|
Перестановки |
Факториал. Понятие перестановок из двух элементов. Перестановка из п- элементов. Формулы. |
|
|
|||||
8 |
|
Размещения |
Понятие размещения из п- элементов по k. Формулы. |
|
|
|||||
9 |
|
Сочетания |
Понятие сочетания из п- элементов по k. Формулы. |
|
|
|||||
§2. Рациональные уравнения и неравенства (14 часов) |
||||||||||
10 |
|
Рациональные выражения |
Понятие одночлена. Понятие многочлена. ФСУ. Сложение, вычитание, умножение и деление алгебраических дробей. Симметрические многочлены. |
|
|
|||||
11 |
|
Формулы бинома Ньютона, суммы и разности степенней |
ФСУ. Треугольник Паскаля. Формула бинома Ньютона. Биноминальные коэффициенты. Упрощение выражений. |
|
|
|||||
12 |
|
Рациональные уравнения |
Понятие рационального уравнения с неизвестным х. Корень или решение уравнения. Распадающиеся уравнения. Примеры решений уравнений. |
|
|
|||||
13 |
|
|
|
|||||||
14 |
|
Системы рациональных уравнений |
Понятие рационального уравнения с неизвестным х. Корень 9Или решение) рационального уравнения с неизвестным х. Распадающиеся уравнения. Примеры решений рациональных уравнений. |
|
|
|||||
|
|
|||||||||
15 |
|
|||||||||
16 |
|
Метод интервалов решения неравенств |
Понятие решения неравенства. Метод интервалов решения неравенства. Общий метод интервалов. Примеры решения неравенств. |
|
|
|||||
17 |
|
|
|
|||||||
18 |
|
Рациональные неравенства |
Понятие рационального неравенства с неизвестным х. Примеры решения рациональных неравенств. |
|
|
|||||
19 |
|
|
|
|||||||
20 |
|
Нестрогие неравенства |
Понятие нестрогих неравенств. Примеры решения нестрогих неравенств. |
|
|
|||||
21 |
|
|
|
|||||||
22 |
|
Системы рациональных неравенств. Подготовка к контрольной работе. |
Подготовка к контрольной работе.Понятие системы рациональных неравенств. Примеры решения систем рациональных неравенств. |
|
|
|||||
23 |
|
Контрольная работа № 2 по теме: «Действительные числа. Рациональные уравнения и неравенства». |
|
|
||||||
Введение (4 часа). |
||||||||||
24 |
|
Основные понятия стереометрии. Аксиомы стереометрии |
1) Стереометрия как раздел геометрии. 2) Основные понятия стереометрии: точка, прямая, плоскость, пространство |
|
|
|||||
25 |
|
Некоторые следствия из аксиом |
1) Понятие об аксиоматическом построении стереометрии. 2) Следствия из аксиом |
|
|
|||||
26 |
|
Решение задач на применение аксиом стереометрии и их следствий |
1) Понятие об аксиоматическом построении стереометрии.
|
|
|
|||||
27 |
|
Решение задач на применение аксиом стереометрии и их следствий |
Следствия из аксиом |
|
|
|||||
Параллельность прямых и плоскостей 19 часов. |
||||||||||
28 |
|
Параллельные прямые в пространстве, параллельность трех прямых |
1) Взаимное расположение прямых в пространстве. 2) Параллельные прямые, свойство параллельных прямых |
|
|
|||||
29 |
|
Параллельные прямые в пространстве, параллельность трех прямых |
1) Взаимное расположение прямых в пространстве. 2) Параллельные прямые, свойство параллельных прямых |
|
|
|||||
30 |
|
Параллельность прямой и плоскости |
Параллельность прямой и плоскости, признак параллельности прямой и плоскости |
|
|
|||||
31 |
|
Параллельность прямой и плоскости |
Параллельность прямой и плоскости, признак параллельности прямой и плоскости |
|
|
|||||
32 |
|
Решение задач на параллельность прямой и плоскости |
Признак параллельности прямой и плоскости, их свойства |
|
|
|||||
33 |
|
Решение задач на параллельность прямой и плоскости |
Признак параллельности прямой и плоскости, их свойства |
|
|
|||||
34 |
|
Скрещивающиеся прямые |
Скрещивающиеся прямые |
|
|
|||||
35 |
|
Углы с сонаправленными сторонами, угол между прямыми |
Угол между двумя прямыми |
|
|
|||||
36 |
|
Решение задач на нахождение угла между прямыми |
Задачи на нахождение угла между двумя прямыми |
|
|
|||||
37 |
|
Решение задач на нахождение угла между прямыми |
Задачи на нахождение угла между двумя прямыми |
|
|
|||||
38 |
|
Контрольная работа № 3 по теме: «Взаимное расположение прямых в пространстве» |
Контроль знаний и умений |
|
|
|||||
39 |
|
Анализ контрольной работы. Параллельность плоскостей |
Параллельность плоскостей. Признак параллельности двух плоскостей |
|
|
|||||
40 |
|
Свойства параллельных плоскостей |
Свойства параллельных плоскостей |
|
|
|||||
41 |
|
Решение задач по теме «Свойства параллельных плоскостей» |
Параллельные плоскости: признак, свойства Уметь: выполнять чертеж по условию задачи |
|
|
|||||
42 |
|
Тетраэдр, параллелепипед |
1) Тетраэдр, параллелепипед (вершины, ребра, грани). 2) Изображение тетраэдра и параллелепипеда на плоскости |
|
|
|||||
43 |
|
Решение задач по теме «Тетраэдр. Параллелепипед» |
Сечение тетраэдра и параллелепипеда |
|
|
|||||
44 |
|
Решение задач по теме «Тетраэдр. Параллелепипед» |
Сечение тетраэдра и параллелепипеда |
|
|
|||||
45 |
|
Контрольная работа № 4 по теме: «Параллельность прямых и плоскостей» |
1) Пересекающиеся, параллельные и скрещивающиеся прямые. 2) Параллельность прямой и плоскости. 3) Параллельность плоскостей |
|
|
|||||
§ 3. Корень степени п. (8 часов) |
||||||||||
46 |
|
Анализ контрольной работы. Понятие функции и ее графика. |
Анализ контрольной работы. Понятие функции. Область определения функции (Е). Область изменения функции. Аргумент, функция. Примеры функций. Понятие графика функции. Непрерывная функция. Примеры непрерывных функций. |
|
|
|||||
47 |
|
Функция у=хп |
Примеры функций вида у=хп. Свойства функции у=хп () для неотрицательных х. Четность и нечетность функции у=хп. |
|
|
|||||
48 |
|
Понятие корня степени п. |
Определение корня степени п. Примеры. |
|
|
|||||
49 |
|
Корни четной и нечетной степеней |
Теорема о единственности корня нечетной степени из любого действительного числа. Теорема о существовании двух корней четной степени из любого положительного числа. Примеры. Замечания. |
|
|
|||||
50 |
|
Арифметический корень |
Определение арифметического корня. Теоремы (свойства) об арифметическом корне. Примеры. |
|
|
|||||
51 |
|
Свойства корней степени п. |
Теоремы (свойства) об арифметическом корне. Примеры. |
|
|
|||||
52 |
|
|
|
|||||||
53 |
|
Самостоятельная работа № 2 по теме: «Корень степени п». |
«Корень степени п». |
|
|
|||||
§ 4. Степень положительного числа (9 часов) |
||||||||||
54 |
|
Степень с рациональным показателем. |
Анализ контрольной работы. Определение степени с рациональным показателем. Теорема о степени с рациональным показателем. |
|
|
|||||
55 |
|
Свойства степени с рациональным показателем. |
Теоремы р свойствах степени с рациональным показателем. |
|
|
|||||
56 |
|
|
||||||||
57 |
|
Понятие предела последовательности. |
Бесконечно малая величина. Бесконечно большая величина. Понятие предела последовательности. Примеры нахождения пределов. |
|
|
|||||
58 |
|
Бесконечно убывающая геометрическая прогрессия. |
Геометрическая прогрессия. Сумма бесконечно убывающей геометрической прогрессии. Ряды. Сумма ряда. |
|
|
|||||
59 |
|
Число е. |
Теорема о пределе переменной ограниченной сверху. Теорема о пределе переменной, ограниченной снизу. Нахождение. Значение числа е. Примеры. |
|
|
|||||
60 |
|
Понятие степени с иррациональным показателем. |
Понятие степени с иррациональным показателем. Свойства действительных степеней. |
|
|
|||||
61 |
|
Показательная функция. Подготовка к контрольной работе. |
Показательная функция. Свойства показательной функции. График показательной функции. Подготовка к контрольной работе. |
|
|
|||||
62 |
|
Контрольная работа № 5 по теме: «Степень положительного числа». |
|
|
||||||
|
|
Перпендикулярность прямых и плоскостей 18 часов. |
|
|
||||||
63 |
|
Анализ КР № 2. Перпендикулярные прямые в пространстве, параллельные прямые, перпендикулярные к плоскости
|
Перпендикулярность прямых, прямой и плоскости, свойства прямых, перпендикулярных к плоскости. |
|
|
|||||
64 |
|
Перпендикулярные прямые в пространстве, параллельные прямые, перпендикулярные к плоскости
|
Перпендикулярные прямые в пространстве, параллельные прямые, перпендикулярные к плоскости
|
|
|
|||||
65 |
|
Признак перпендикулярности прямой и плоскости |
Признак перпендикулярности прямой и плоскости |
|
|
|||||
66 |
|
Признак перпендикулярности прямой и плоскости |
Признак перпендикулярности прямой и плоскости |
|
|
|||||
67 |
|
Теорема о прямой, перпендикулярной к плоскости |
Перпендикулярность прямой и плоскости |
|
|
|||||
68 |
|
Решение задач по теме «Перпендикулярность прямой и плоскости» |
Перпендикулярность прямых, прямой и плоскости |
|
|
|||||
69 |
|
Расстояние от точки до плоскости. |
1) Расстояние от точки до плоскости, от прямой до плоскости, расстояние между параллельными плоскостями |
|
|
|||||
70 |
|
Теорема о трех перпендикулярах |
1) Расстояние между параллельными плоскостями. 2) Перпендикуляр и наклонная. 3) Теорема о трех перпендикулярах |
|
|
|||||
71 |
|
Теорема о трех перпендикулярах |
1) Расстояние между параллельными плоскостями. 2) Перпендикуляр и наклонная. 3) Теорема о трех перпендикулярах |
|
|
|||||
72 |
|
Угол между прямой и плоскостью |
Угол между прямой и плоскостью |
|
|
|||||
73 |
|
Решение задач по теме «Теорема о трех перпендикулярах, угол между прямой и плоскостью» |
1) Перпендикуляр и наклонная. 2) Угол между прямой и плоскостью |
|
|
|||||
74 |
|
Признак перпендикулярности двух плоскостей |
Перпендикулярность плоскостей: определение, признак |
|
|
|||||
75 |
|
Признак перпендикулярности двух плоскостей |
Перпендикулярность плоскостей: определение, признак |
|
|
|||||
76 |
|
Теорема перпендикулярности двух плоскостей |
Признак перпендикулярности двух плоскостей |
|
|
|||||
77 |
|
Прямоугольный параллелепипед, куб |
1)Прямоугольный параллелепипед: определение, свойства. 2) Куб |
|
|
|||||
78 |
|
Параллельное проектирование, изображение пространственных фигур |
1) Параллельное проектирование. 2) Изображение пространственных фигур |
|
|
|||||
79 |
|
Решение задач по теме «Перпендикулярность плоскостей» |
Перпендикулярность прямых и плоскостей: признаки, свойства |
|
|
|||||
80 |
|
Контрольная работа N 6 по теме: «Перпендикулярность прямых и плоскостей» |
1) Перпендикулярность прямых и плоскостей: признаки, свойства. 2) Наклонная и ее проекция 3) Угол между прямой и плоскостью |
|
|
|||||
|
|
§ 5. Логарифмы. 6 часов |
|
|
|
|||||
81 |
|
Анализ контрольной работы. Понятие логарифма. |
Анализ контрольной работы. Понятие логарифма. Натуральный логарифм. Десятичный логарифм. |
|
|
|||||
|
|
|||||||||
82 |
|
|||||||||
83 |
|
Свойства логарифмов |
Свойства логарифмов и их применение. |
|
|
|||||
84 |
|
|
|
|||||||
85 |
|
|
|
|||||||
86 |
|
Логарифмическая функция. |
Логарифмическая функция. Свойства логарифмической функции. График логарифмической функции. |
|
|
|||||
§ 6. Показательные и логарифмические уравнения и неравенства.(7 часов) |
||||||||||
87 |
|
Простейшие показательные уравнения. |
Понятие простейшего показательного уравнения. Примеры решений простейших показательных уравнений. |
|
|
|||||
88 |
|
Простейшие логарифмические уравнения. |
Понятие простейшего логарифмического уравнения. Примеры решений простейших логарифмических уравнений. |
|
|
|||||
89 |
|
Уравнения, сводящиеся к простейшим заменой неизвестного. |
Примеры решений уравнений, сводящихся к простейшим заменой неизвестного. |
|
|
|||||
90 |
|
Простейшие показательные неравенства |
Понятие простейшего показательного неравенства. Примеры решений простейших показательных неравенств. |
|
|
|||||
91 |
|
Простейшие логарифмические неравенства |
Понятие простейшего логарифмического неравенства. Примеры решений простейших логарифмических неравенств. |
|
|
|||||
92 |
|
Неравенства, сводящиеся к простейшим заменой неизвестного. |
Примеры решений неравенств, сводящиеся к простейшим заменой неизвестного. |
|
|
|||||
93 |
|
Решение задач. |
Логарифмы. Показательные и логарифмические уравнения и неравенства. |
|
|
|||||
Многогранники 11 часов. |
||||||||||
94 |
|
Понятие многогранника |
Многогранники: вершины, ребра, грани |
|
|
|||||
95 |
|
Призма |
1) Призма, ее основание, боковые ребра, высота, боковая поверхность. 2) Прямая призма |
|
|
|||||
96 |
|
Призма. Площадь боковой и полной поверхности призмы |
Площадь боковой и полной поверхности призмы |
|
|
|||||
97 |
|
Решение задач на нахождение площади полной и боковой поверхности |
Призма, прямая призма, правильная |
|
|
|||||
98 |
|
Пирамида |
Пирамида: основание, боковые ребра, высота, боковая поверхность, сечение пирамиды |
|
|
|||||
99 |
|
Треугольная пирамида |
1) Треугольная пирамида. 2) Площадь боковой поверхности |
|
|
|||||
100 |
|
Правильная пирамида |
Правильная пирамида |
|
|
|||||
101 |
|
Решение задач на вычисление площади полной поверхности и боковой поверхности пирамиды |
Площадь боковой поверхности пирамиды |
|
|
|||||
102 |
|
Понятие правильного многогранника |
Правильные многогранники (тетраэдр, куб, октаэдр, додекаэдр, икосаэдр) |
|
|
|||||
103 |
|
Решение задач по теме «Многогранники» |
Многогранники |
|
|
|||||
104 |
|
Контрольная работа № 7 по теме: «Многогранники» |
1) Пирамида. 2) Призма. 3) Площадь боковой и полной поверхности |
|
|
|||||
Глава II. Тригонометрические формулы. Тригонометрические функции (51 час) |
||||||||||
§ 7. Синус и косинус угла. (7 часов) |
||||||||||
105 |
|
Понятие угла. |
Анализ контрольной работы. Подвижный вектор. Полный оборот. Положительные, отрицательные углы. Нулевой угол. Градусная мере угла. |
|
|
|||||
106 |
|
Радианная мера угла. |
Радианная мера угла. Радианы. Перевод градусной меры в радианную и наоборот. |
|
|
|||||
107 |
|
Определение синуса и косинуса угла. |
Единичная окружность. Определение синуса угла. Определение косинуса угла. Свойства и утверждения для синуса и косинуса угла. |
|
|
|||||
108 109 |
|
Основные формулы для sin α и cos α. |
Основные формулы для sin α и cos α. Основное тригонометрическое тождество. |
|
|
|||||
|
||||||||||
110 |
|
Арксинус. |
Понятие арксинуса числа а. Происхождение слова «арксинус». Рассмотрение некоторых задач, при решении которых используется понятие арксинуса. |
|
|
|||||
111 |
|
Арккосинус. |
Понятие арккосинуса числа а. Рассмотрение некоторых задач, при решении которых используется понятие арккосинуса. |
|
|
|||||
§ 8. Тангенс и котангенс угла. (4 часа) |
||||||||||
112 |
|
Определение тангенса и котангенса угла |
Определение тангенса угла. Определение котангенса угла. Ось тангенсов. Ось котангенсов. |
|
|
|||||
113 |
|
Основные формулы для tg α и ctg α. |
Основные формулы для tg α и ctg α. |
|
|
|||||
114 |
|
Арктангенс. |
Понятие арктангенса числа а. Рассмотрение задач и примеров, в которых используется понятие арктангенса. |
|
|
|||||
115 |
|
Решение задач. Самостоятельная работа. |
Синус и косинус угла. Тангенс и котангенс угла. |
|
|
|||||
§ 9. Формулы сложения. (10 часов) |
||||||||||
116
|
|
Косинус разности и косинус суммы двух углов |
Анализ контрольной работы. Теоремы и их доказательства о косинусе разности и косинусе суммы двух углов. Формулы. |
|
|
|||||
|
||||||||||
117 |
|
|||||||||
118 |
|
Формулы для дополнительных углов |
Теорема и ее доказательство о косинусе и синусе дополнительных углов. Формулы. |
|
|
|
||||
119 |
|
Синус суммы и синус разности двух углов |
Теоремы и их доказательства о синусе суммы и синусе разности двух углов. Формулы. |
|
|
|||||
120 |
|
|
||||||||
121 |
|
Сумма и разность синусов и косинусов |
Теоремы о сумме и разности синусов и косинусов. Формулы. |
|
|
|||||
122 |
|
|||||||||
|
||||||||||
123 |
|
Формулы для двойных и половинных углов |
Теоремы и их доказательства о синусах и косинусах двойных и половинных углов. Формулы. |
|
|
|
||||
124 |
|
Произведение синусов и косинусов |
Теорема и ее доказательство о произведении синусов и косинусов. Формулы. |
|
|
|||||
125 |
|
Формулы для тангенсов |
Теоремы и их доказательства о тангенсе суммы и разности двух углов. Формулы. Теоремы и их доказательства о тангенсе двойных и половинных углов. Формулы. |
|
|
|||||
Векторы 7 часов. |
||||||||||
126 |
|
Понятие вектора. Равенство векторов |
1) Векторы. 2) Модуль вектора. 3) Равенство векторов. 4) Коллинеарные векторы |
|
|
|||||
127 |
|
Сложение и вычитание векторов. Сумма нескольких векторов |
Сложение и вычитание векторов |
|
|
|||||
128 |
|
Умножение вектора на число |
1) Умножение вектора на. число. 2) Разложение вектора по двум неколлинеарным векторам |
|
|
|||||
129 |
|
Компланарные векторы |
Компланарные векторы |
|
|
|||||
130 |
|
Правило параллелепипеда |
Правило параллелепипед. |
|
|
|||||
131 |
|
Разложение вектора по трем некомпланарным векторам |
Разложение вектора по трем некомпланарным векторам |
|
|
|||||
132 |
|
Контрольная работа № 8 по теме: «Векторы» |
1) Векторы. 2) Равенство векторов. 3) Сонаправленные и противоположно-направленные. 4) Разложение вектора по двум некомпланарным, по трем некомпланарным векторам |
|
|
|||||
§ 10. Тригонометрические функции числового аргумента (8 часов)
|
||||||||||
133 134 |
|
Функция у = sin х |
Понятие функции у = sin х. Свойства функции у = sin х. График функции у = sin х и его построение. |
|
|
|||||
|
||||||||||
135 |
|
Функция у = cos х |
Понятие функции у = cos х. Свойства функции у = cos х. График функции у = cos х и его построение. |
|
|
|||||
136 |
|
|
|
|||||||
137 |
|
Функция у = tg х |
Понятие функции у = tg х.
Свойства функции у = tg х. График
функции |
|
|
|||||
138 |
|
|
|
|||||||
139 |
|
Функция у = ctg х. Подготовка к контрольной работе. |
Понятие функции у = ctg х. Свойства функции у = ctg х. График функции у = ctg х и его построение. Подготовка к контрольной работе. |
|
|
|||||
140 |
|
Контрольная работа № 9 по теме: «Формулы сложения. Тригонометрические функции числового аргумента». |
|
|
||||||
§ 11. Тригонометрические уравнения и неравенства. (8 часов) |
||||||||||
141 |
|
Простейшие тригонометрические уравнения. |
Анализ контрольной работы. Основные тригонометрические функции. Понятие простейшего тригонометрического уравнения. Решение простейших тригонометрических уравнений: sin x = a, cos x = a, tg x = a, ctg x = a. |
|
|
|||||
142 |
|
|
|
|||||||
143 |
|
Уравнения, сводящиеся к простейшим заменой неизвестного |
Решение уравнений, которые после введения нового
неизвестного |
|
|
|||||
144 |
|
|
|
|||||||
145 |
|
Применение основных тригонометрических формул для решения уравнений |
Применение основного тригонометрического тождества при решении уравнений. Применение формул сложения при решении уравнений. Понижение кратности углов при решении уравнений. Понижение степени уравнения. |
|
|
|||||
146 |
|
|
|
|||||||
147
|
|
Однородные уравнения. Подготовка к контрольной работе. |
Понятие однородного тригонометрического уравнения первой степени. Основное тригонометрическое уравнение степени п. Решение однородных тригонометрических уравнений. Подготовка к контрольной работе. |
|
|
|||||
148 |
|
Контрольная работа № 10 по теме: «Тригонометрические уравнения и неравенства». |
|
|
||||||
§ 12. Элементы теории вероятностей (4 часа) |
||||||||||
149 150 |
|
Понятие вероятности события. |
Анализ контрольной работы. Случайные и возможные события. Единственно возможные события. Равновозможные события. Достоверные события. Невозможные события. Несовместные события. Случаи. Понятие вероятности события. |
|
|
|||||
|
||||||||||
151 |
|
Свойства вероятностей событий |
Сумма (объединение) событий А и В. Произведение (пересечение) событий А и В. Противоположные события. |
|
|
|||||
152 |
|
|
||||||||
Итоговое повторение (13 часов) |
||||||||||
153 |
|
Повторение. Рациональные уравнения и неравенства. |
Повторение. Рациональные уравнения и неравенства. |
|
|
|||||
154 |
|
Повторение. Рациональные уравнения и неравенства. |
Повторение. Рациональные уравнения и неравенства. |
|
|
|||||
155
|
|
Повторение. Корень степени п. |
Повторение. Корень степени п. |
|
|
|||||
156 |
|
Повторение. Корень степени п. |
Повторение. Корень степени п. |
|
|
|||||
157 |
|
Повторение. Степень положительного числа. |
Повторение. Степень положительного числа. |
|
|
|||||
158 |
|
Повторение. Простейшие показательные и логарифмические уравнения и неравенства. |
Повторение. Простейшие показательные и логарифмические уравнения и неравенства. |
|
|
|||||
159 |
|
Повторение. Простейшие показательные и логарифмические уравнения и неравенства. |
Повторение. Простейшие показательные и логарифмические уравнения и неравенства. |
|
|
|||||
160 |
|
Параллельность прямых и плоскостей.
|
Повторение: основополагающие аксиомы стереометрии, признаки взаимного расположения прямых и плоскостей в пространстве, основные пространственные формы |
|
|
|||||
161 |
|
Перпендикулярность прямой и плоскости. |
Повторение: основополагающие аксиомы стереометрии, признаки взаимного расположения прямых и плоскостей в пространстве, основные пространственные формы. |
|
|
|||||
162 |
|
Угол между прямой и плоскостью |
Повторение: основополагающие аксиомы стереометрии, признаки взаимного расположения прямых и плоскостей в пространстве, основные пространственные формы. |
|
|
|||||
163 |
|
Параллельность прямых и плоскостей. |
Повторение: основополагающие аксиомы стереометрии, признаки взаимного расположения прямых и плоскостей в пространстве, основные пространственные формы. |
|
|
|||||
164 |
|
Перпендикулярность прямой и плоскости |
Повторение: основополагающие аксиомы стереометрии, признаки взаимного расположения прямых и плоскостей в пространстве, основные пространственные формы. |
|
|
|||||
165 |
|
Угол между прямой и плоскостью |
Повторение: основополагающие аксиомы стереометрии, признаки взаимного расположения прямых и плоскостей в пространстве, основные пространственные формы. |
|
|
|||||
166 |
|
Итоговая контрольная работа №11. |
|
|
|
|||||
167 |
|
Повторение. Косинус, синус, тангенс и котангенс угла. |
Повторение. Косинус, синус, тангенс и котангенс угла. |
|
||||||
168 |
|
Повторение. Формулы сложения |
Повторение. Формулы сложения. |
|
|
|||||
169 |
|
Повторение. Тригонометрические функции числового аргумента. |
Повторение. Тригонометрические функции числового аргумента. |
|
|
|||||
170 |
|
Повторение. Тригонометрические уравнения и неравенства. |
Повторение. Тригонометрические уравнения и неравенства. |
|
|
|||||
|
ТРЕБОВАНИЯ К МАТЕМАТИЧЕСКОЙ ПОДГОТОВКЕ УЧАЩИХСЯ
В результате изучения математики на базовом уровне ученик должен
знать/понимать
· значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
· значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
· вероятностный характер различных процессов окружающего мира.
Алгебра
уметь
· выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
· проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
· вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
· практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
Функции и графики
уметь
· определять значение функции по значению аргумента при различных способах задания функции;
· строить графики изученных функций;
· описывать по графику и в простейших случаях по формуле поведение и свойства функций;
· решать графически уравнения;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
· описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
Уравнения и неравенства
уметь
· решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения;
· составлять уравнения и неравенства по условию задачи;
· использовать для приближенного решения уравнений и неравенств графический метод;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
· построения и исследования простейших математических моделей;
Элементы комбинаторики, статистики и теории вероятностей
уметь
· решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
· вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
· анализа реальных числовых данных, представленных в виде диаграмм, графиков;
· анализа информации статистического характера.
Геометрия
знать/понимать
- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю возникновения и развития геометрии; универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности.
уметь
- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- изображать основные многогранники; выполнять чертежи по условиям задач;
- строить простейшие сечения куба, призмы, пирамиды;
- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей);
- использовать при решении стереометрических задач планиметрические факты и методы;
- проводить доказательные рассуждения в ходе решения задач;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
Литература
1. Учебник: Алгебра и начала математического анализа. 10 класс: Учебник для общеобразовательных учреждений: базовый и профильный уровни \ С.М. Никольский, М.К. Потапов, Н.Н Решетников, А.В. Шевкин - 8-е издание. - М.: Просвещение, 2013.
2.Учебник: Геометрия: Учебник для 10-11 кл. общеобразовательных учреждений / Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. - М.: Просвещение, 2013.
3. Алгебра и начала анализа: дидактические материалы для 10 класса/ М. К. Потапов, А. В. Шевкин - М.; Просвещение, 2013.
4.Алгебра и начала анализа. 10 кл. Книга для учителя М.К. Потапов, А.В. Шевкин, 2012, 192 стр
5. Ершова А.П., Голобородько В.В., Ершова А.С.Самостоятельные и контрольные работы по математике для 5-11 классов.- М.:Илекса, 2012.
6. Зив Б.Г. Дидактические материалы по геометрии для 10 класса. – М.: Просвещение, 2011.
7. http://fipi.ru/ Федеральный институт педагогических измерений
8. http://reshuege.ru/ Образовательный портал для подготовки к экзаменам
9. http://alexlarin.net/ege/ тренировочные варианты ЕГЭ
ПРИНЯТЫЕ СОКРАЩЕНИЯ В КАЛЕНДАРНО-ТЕМАТИЧЕСКОМ ПЛАНИРОВАНИИ
Тип урока |
Форма контроля |
УОНМ - урок ознакомления с новым материалом |
МД - математический диктант |
УЗИМ - урок закрепления изученного материала |
СР - самостоятельная работа |
УПЗУ - урок применения знаний и умений |
ФО - фронтальный опрос |
КУ - комбинированный урок |
ПР – практическая работа |
КЗУ - контроль знаний и умений |
ДМ - дидактические материалы |
УОСЗ - урок обобщения и систематизации знаний |
КР — контрольная работа |
Скачано с www.znanio.ru
© ООО «Знанио»
С вами с 2009 года.