Федеральное государственное бюджетное образовательное учреждение
высшего образования
«Ульяновский государственный педагогический университет
имени И.Н. Ульянова»
Факультет образовательных технологий и непрерывного образования
Кафедра специального и профессионального образования,
здорового и безопасного образа жизни
Итоговая аттестационная работа
на тему:
«Рабочая программа по математике 5 класса адаптированной основной образовательной программы основного общего образования обучающихся
с задержкой психического развития»
Работу выполнила
слушатель курсов группы КОР-7
Латыпова Гелфария Миннегалиевна
Учитель математики
МОУ Красногуляевская СШ
п. Красный Гуляй
2023 г.
ОГЛАВЛЕНИЕ
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.......................................................................... 2
Общая характеристика учебного предмета «Математика»...................... 2
Цели и задачи изучения учебного предмета «Математика»..................... 4
Особенности отбора и адаптации учебного материала по математике.... 6
Примерные виды деятельности обучающихся с ЗПР, обусловленные особыми образовательными потребностями и обеспечивающие осмысленное освоение содержании образования по предмету
«Математика»......................................................................................... 7
Место учебного предмета «Математика» в учебном плане .......................7
ПРИМЕРНАЯ РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА
«МАТЕМАТИКА». 5 КЛАСС........................................................................... 8
Цели изучения учебного курса............................................................... 8
Место учебного курса в учебном плане................................................. 10
Содержание учебного курса (по годам обучения) ...............................................11
5 КЛАСС................................................................................................ 11
Примерные контрольно-измерительные материалы.............................. 13
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА
«МАТЕМАТИКА» НА УРОВНЕ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ.. 14
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ............................................................. 14
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ................................................... 14
ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ............................................................. 16
ПЛАНИРУЕМЫЕ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРИМЕРНОЙ РАБОЧЕЙ ПРОГРАММЫ КУРСА «МАТЕМАТИКА»
5 КЛАСС................................................................................................ 16
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ ..............................................................19
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Примерная рабочая программа по математике для обучающихся с задержкой психического развития (далее – ЗПР) на уровне основного общего образования подготовлена на основе Федерального государственного образовательного стандарта основного общего образования (Приказ Минпросвещения России от 31.05.2021 г. № 287, зарегистрирован Министерством юстиции Российской Федерации 05.07.2021 г., рег. номер 64101) (далее – ФГОС ООО), Примерной адаптированной основной образовательной программы основного общего образования обучающихся с задержкой психического развития (одобренной решением ФУМО по общему образованию (протокол от 18 марта 2022 г. № 1/22)) (далее – ПАООП ООО ЗПР), Примерной рабочей программы основного общего образования по предмету «Математика», Примерной программы воспитания, с учетом распределенных по классам проверяемых требований к результатам освоения Адаптированной основной образовательной программы основного общего образования обучающихся с задержкой психического развития. В рабочей программе учтены идеи и положения Концепции развития математического образования в Российской Федерации.
Учебный предмет «Математика» входит в предметную область
«Математика и информатика». Он способствует развитию вычислительной культуры и логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни обучающихся с ЗПР. Учебный предмет развивает мышление, пространственное воображение, функциональную грамотность, умения воспринимать и критически анализировать информацию, представленную в различных формах.
Обучение математике даёт возможность развивать у обучающихся с ЗПР точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления.
Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методах математики, их отличий от методов других естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общей культуры человека.
Изучение математики также способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.
Программа отражает содержание обучения предмету «Математика» с учетом особых образовательных потребностей обучающихся с ЗПР. Овладение учебным предметом «Математика» представляет определенную сложность для учащихся с ЗПР. У обучающихся с ЗПР наиболее выражены отставания в развитии словесно-логических форм мышления, поэтому абстрактные и отвлеченные категории им труднодоступны. В тоже время при специальном обучении обучающиеся могут выполнять задания по алгоритму. Они восприимчивы к помощи, могут выполнить перенос на аналогичное задание усвоенного способа решения. Снижение развития мыслительных операций и замедленное становление логических действий приводят к недостаточной осмысленности совершаемых учебных действий. У обучающихся затруднены счетные вычисления, производимые в уме. В письменных вычислениях они могут пропускать один из промежуточных шагов. При работе с числовыми выражениями, вычислением их значения могут не удерживать правильный порядок действий. При упрощении, преобразовании выражений учащиеся с ЗПР не могут самостоятельно принять решение о последовательности выполнения действий. Конкретность мышления осложняет усвоения навыка решения уравнений, неравенств, системы уравнений. Им малодоступно совершение обратимых операций.
Низкий уровень развития логических операций, недостаточная обобщенность мышления затрудняют изучение темы «Функции»: при определении функциональной зависимости, при описании графической ситуации, используя геометрический, алгебраический, функциональный языки. Нередко учащиеся не видят разницы между областью определения функции и областью значений.
Решение задач сопряжено с трудностями оформления краткой записи, проведения анализа условия задачи, выделения существенного. Обучающиеся с ЗПР затрудняются сделать умозаключение от общего к частному, нередко выбирают нерациональные способы решения, иногда ограничиваются манипуляциями с числами.
При изучении геометрического материала обучающиеся с ЗПР сталкиваются с трудностью делать логические выводы, строить последовательные рассуждения. Непрочные знания основных теорем геометрии приводит к ошибкам в решении геометрических задач. Обучающиеся могут подменить формулу, неправильно применить теорему. К серьезным ошибкам в решении задач приводят недостаточно развитые пространственные представления. Им сложно выполнить чертеж к условию, в письменных работах они не могут привести объяснение к чертежу.
Точность запоминания и воспроизведения учебного материала снижены по причине слабости мнестической деятельности, сужения объема памяти. Обучающимся с ЗПР требуется больше времени на закрепление материала, актуализация знаний по опоре при воспроизведении.
Для преодоления трудностей в изучении учебного предмета «Математика» необходима адаптация объема и характера учебного материала к познавательным возможностям учащихся с ЗПР. Следует учебный материал преподносить небольшими порциями, усложняя его постепенно, изыскивать способы адаптации трудных заданий, некоторые темы давать как ознакомительные; исключать отдельные трудные доказательства; теоретический материал рекомендуется изучать в процессе практической деятельности по решению задач. Органическое единство практической и умственной деятельности учащихся на уроках математики способствуют прочному и сознательному усвоению базисных математических знаний и умений.
Приоритетными целями обучения математике в 5–9 классах являются:
§ формирование центральных математических понятий (число, величина, геометрическая фигура, переменная, вероятность, функция), обеспечивающих преемственность и перспективность математического образования обучающихся с ЗПР;
§ подведение обучающихся с ЗПР на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, понимание математики как части общей культуры человечества;
§ развитие интеллектуальных и творческих способностей обучающихся с ЗПР, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению математики;
§ формирование функциональной математической грамотности: умения распознавать проявления математических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке математики и создавать математические модели, применять освоенный математический аппарат для решения практико-ориентированных задач, интерпретировать и оценивать полученные результаты.
Достижение этих целей обеспечивается решением следующих задач:
§ формировать у обучающихся с ЗПР навыки учебно-познавательной деятельности: планирование работы, поиск рациональных путей ее выполнения, осуществления самоконтроля;
§ способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, пространственных представлений, способности к преодолению трудностей;
§ формировать ключевые компетенции учащихся в рамках предметной области «Математика и информатика»;
§ развивать понятийное мышления обучающихся с ЗПР;
§ осуществлять коррекцию познавательных процессов обучающихся с ЗПР, необходимых для освоения программного материала по учебному предмету;
§ предусматривать возможность компенсации образовательных дефицитов в освоении предшествующего программного материала у обучающихся с ЗПР и недостатков в их математическом развитии;
§ сформировать устойчивый интерес учащихся к предмету;
§ выявлять и развивать математические и творческие способности.
Основные линии содержания курса математики в 5–9 классах: «Числа и вычисления», «Алгебра» («Алгебраические выражения», «Уравнения и неравенства»), «Функции», «Геометрия» («Геометрические фигуры и их свойства», «Измерение геометрических величин»), «Вероятность и статистика». Данные линии развиваются параллельно, каждая в соответствии с собственной логикой, однако не независимо одна от другой, а в тесном контакте и взаимодействии. Кроме этого, их объединяет логическая составляющая, традиционно присущая математике и пронизывающая все математические курсы и содержательные линии. Сформулированное в Федеральном государственном образовательном стандарте основного общего образования требование «уметь оперировать понятиями: определение, аксиома, теорема, доказательство; умение распознавать истинные и ложные высказывания, приводить примеры и контрпримеры, строить высказывания и отрицания высказываний» относится ко всем курсам, а формирование логических умений распределяется по всем годам обучения на уровне основного общего образования.
Содержание образования, соответствующее предметным результатам освоения Примерной рабочей программы, распределённым по годам обучения, структурировано таким образом, чтобы ко всем основным, принципиальным вопросам обучающиеся обращались неоднократно, чтобы овладение математическими понятиями и навыками осуществлялось последовательно и поступательно, с соблюдением принципа преемственности, а новые знания включались в общую систему математических представлений обучающихся с ЗПР, расширяя и углубляя её, образуя прочные множественные связи. Общие цели изучения учебного предмета «Математика» представлены в Примерной рабочей программе основного общего образования.
Обучение учебному предмету «Математика» строится на создании оптимальных условий для усвоения программного материала обучающимися с ЗПР. Большое внимание уделяется отбору учебного материала в соответствии с принципом доступности при сохранении общего базового уровня, который должен по содержанию и объему быть адаптированным для обучающихся с ЗПР в соответствии с их особыми образовательными потребностями. Следует облегчить овладение материалом обучающимися с ЗПР посредством его детального объяснения с систематическим повтором, многократной тренировки в применении знаний, используя приемы актуализации (визуальная опора, памятка).
Примерная программа предусматривает внесение некоторых изменений: уменьшение объема теоретических сведений, вынесение отдельных тем или целых разделов в материалы для обзорного, ознакомительного изучения.
В ознакомительном плане рекомендуется изучать следующие темы:
«Римская нумерация», «Равные фигуры», «Цилиндр, конус, шар», «Куб»,
«Прямоугольный параллелепипед», «Перемещение по координатной прямой»,
«Модуль числа», «Числовые промежутки»; «Масштаб» (изучается в курсе
«География»); «Изображение геометрических фигур на нелинованной бумаге с использованием циркуля, линейки, угольника, транспортира», «Длина окружности», «Площадь круга», «Параллельные прямые», «Перпендикулярные прямые», «Осевая и центральная симметрии» (изучается в курсе геометрии);
«Бесконечные периодические десятичные дроби. Десятичное приближение обыкновенной дроби» (изучается в курсе алгебры).
Следует уменьшить количество часов на следующие темы: «Решение логический задач», «Длина отрезка», «Шкалы», «Распределительный закон умножения», «Запись произведения с буквенными множителями», «Построение конфигураций из частей прямой, окружности на нелинованной и клетчатой бумаге», «Делители и кратные. Признаки делимости», «Наибольший общий делитель и наименьшее общее кратное. Делимость суммы и произведения».
«Приведение дроби к новому знаменателю», «Нахождение части целого и целого по его части». «Округление десятичных дробей». «Решение задач перебором всех возможных вариантов». «Составление буквенных выражений по условию задачи». Высвободившиеся часы можно использовать на повторение (в начале и конце учебного года), на изучение наиболее трудных и значимых тем: в V классе
– на решение уравнений, приведение дроби к новому знаменателю, умножение и деление десятичных дробей, измерение углов; в VI классе – действия с положительными и отрицательными числами, решение уравнений, сложение и вычитание чисел, содержащих целую и дробную часть, на умножение и деление обыкновенных дробей.
Содержание видов деятельности обучающихся с ЗПР определяется их особыми образовательными потребностями. Помимо широко используемых в ООП ООО общих для всех обучающихся видов деятельности следует усилить виды деятельности специфичные для данной категории детей, обеспечивающие осмысленное освоение содержания образования по предмету: усиление предметно-практической деятельности с активизацией сенсорных систем; чередование видов деятельности, задействующих различные сенсорные системы; освоение материала с опорой на алгоритм; «пошаговость» в изучении материала; использование дополнительной визуальной опоры (схемы, шаблоны, опорные таблицы); речевой отчет о процессе и результате деятельности; выполнение специальных заданий, обеспечивающих коррекцию регуляции учебно-познавательной деятельности и контроль собственного результата.
Примерная тематическая и терминологическая лексика соответствует ООП ООО.
Для обучающихся с ЗПР существенным являются приемы работы с лексическим материалом по предмету. Проводится специальная работа по введению в активный словарь обучающихся соответствующей терминологии. Изучаемые термины вводятся на полисенсорной основе, обязательна визуальная поддержка, алгоритмы работы с определением, опорные схемы для актуализации терминологии.
В соответствии с Федеральным государственным образовательным стандартом основного общего образования учебный предмет «Математика» входит в предметную область «Математика и информатика» и является обязательным для изучения. В 5-9 классах учебный предмет «Математика»
традиционно изучается в рамках следующих учебных курсов: в 5-6 классах – курса «Математика».
Содержание учебного предмета «Математика», представленное в Примерной рабочей программе, соответствует ФГОС ООО, Примерной основной образовательной программе основного общего образования, Примерной адаптированной основной образовательной программе основного общего образования обучающихся с задержкой психического развития.
Тематическое планирование учебных курсов и рекомендуемое распределение учебного времени для изучения отдельных тем, предложенные в настоящей программе, надо рассматривать как примерные ориентиры в помощь составителю авторской рабочей программы и прежде всего учителю. Автор рабочей программы вправе увеличить предложенное число учебных часов на темы, требующие более длительного изучения обучающимися с ЗПР, или уменьшить количество часов на темы, изучаемые на ознакомительном уровне. Допустимо также локальное перераспределение и перестановка элементов содержания внутри данного класса. Количество проверочных работ (тематический и итоговый контроль качества усвоения учебного материала) и их тип (самостоятельные и контрольные работы, тесты) остаются на усмотрение учителя. Также учитель вправе увеличить или уменьшить число учебных часов, отведённых в Примерной рабочей программе на обобщение, повторение, систематизацию знаний обучающихся. Единственным, но принципиально важным критерием, является достижение результатов обучения, указанных в настоящей программе.
ПРИМЕРНАЯ РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА
«МАТЕМАТИКА». 5–6 КЛАССЫ
Приоритетными целями обучения математике в 5–6 классах являются:
§ продолжение формирования основных математических понятий (число, величина, геометрическая фигура), обеспечивающих преемственность и перспективность математического образования обучающихся;
§ развитие интеллектуальных и творческих способностей обучающихся c ЗПР, познавательной активности, исследовательских умений, интереса к изучению математики;
§ подведение обучающихся с ЗПР на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира;
§ формирование функциональной математической грамотности: умения распознавать математические объекты в реальных жизненных ситуациях, применять освоенные умения для решения практико-ориентированных задач, интерпретировать полученные результаты и оценивать их на соответствие практической ситуации.
Основные линии содержания курса математики в 5–6 классах – арифметическая и геометрическая, которые развиваются параллельно, каждая в соответствии с собственной логикой, однако, не независимо одна от другой, а в тесном контакте и взаимодействии. Также в курсе происходит знакомство с элементами алгебры и описательной статистики.
Изучение арифметического материала начинается со систематизации и развития знаний о натуральных числах, полученных в начальной школе. При этом совершенствование вычислительной техники и формирование новых теоретических знаний сочетается с развитием вычислительной культуры, в частности с обучением простейшим приёмам прикидки и оценки результатов вычислений. Изучение натуральных чисел продолжается в 6 классе знакомством с начальными понятиями теории делимости.
Другой крупный блок в содержании арифметической линии – это дроби. Начало изучения обыкновенных и десятичных дробей отнесено к 5 классу. Это первый этап в освоении дробей, когда происходит знакомство с основными идеями, понятиями темы. При этом рассмотрение обыкновенных дробей в полном объёме предшествует изучению десятичных дробей, что целесообразно с точки зрения логики изложения числовой линии, когда правила действий с десятичными дробями можно обосновать уже известными алгоритмами выполнения действий с обыкновенными дробями. Знакомство с десятичными дробями расширит возможности для понимания обучающимися прикладного применения новой записи при изучении других предметов и при практическом использовании. К 6 классу отнесён второй этап в изучении дробей, где происходит совершенствование навыков сравнения и преобразования дробей, освоение новых вычислительных алгоритмов, оттачивание техники вычислений,
в том числе значений выражений, содержащих и обыкновенные, и десятичные дроби, установление связей между ними, рассмотрение приёмов решения задач на дроби. В начале 6 класса происходит знакомство с понятием процента.
Особенностью изучения положительных и отрицательных чисел является то, что они также могут рассматриваться в несколько этапов. В 6 классе в начале изучения темы «Положительные и отрицательные числа» выделяется подтема
«Целые числа», в рамках которой знакомство с отрицательными числами и действиями с положительными и отрицательными числами происходит на основе содержательного подхода. Это позволяет на доступном уровне познакомить учащихся практически со всеми основными понятиями темы, в том числе и с правилами знаков при выполнении арифметических действий. Изучение рациональных чисел на этом не закончится, а будет продолжено в курсе алгебры 7 класса, что станет следующим проходом всех принципиальных вопросов, тем самым разделение трудностей облегчает восприятие материала, а распределение во времени способствует прочности приобретаемых навыков.
При обучении решению текстовых задач в 5—6 классах используются арифметические приёмы решения. Текстовые задачи, решаемые при отработке вычислительных навыков в 5—6 классах, рассматриваются задачи следующих видов: задачи на движение, на части, на покупки, на работу и производительность, на проценты, на отношения и пропорции. Кроме того, обучающиеся знакомятся с приёмами решения задач перебором возможных вариантов, учатся работать с информацией, представленной в форме таблиц или диаграмм.
В Примерной рабочей программе предусмотрено формирование пропедевтических алгебраических представлений. Буква как символ некоторого числа в зависимости от математического контекста вводится постепенно. Буквенная символика широко используется прежде всего для записи общих утверждений и предложений, формул, в частности для вычисления геометрических величин, в качестве «заместителя» числа.
В курсе «Математики» 5–6 классов представлена наглядная геометрия, направленная на развитие образного мышления, пространственного воображения, изобразительных умений. Это важный этап в изучении геометрии, который осуществляется на наглядно-практическом уровне, опирается на наглядно-образное мышление обучающихся. Большая роль отводится практической деятельности, опыту, эксперименту, моделированию. Обучающиеся знакомятся с геометрическими фигурами на плоскости и в пространстве, с их простейшими конфигурациями, учатся изображать их на нелинованной и клетчатой бумаге, рассматривают их простейшие свойства. В процессе изучения наглядной геометрии знания, полученные обучающимися в начальной школе, систематизируются и расширяются.
Согласно учебному плану в 5–6 классах изучается интегрированный предмет «Математика», который включает арифметический материал и наглядную геометрию, а также пропедевтические сведения из алгебры, элементы логики и начала описательной статистики.
Учебный план на изучение математики в 5–6 классах отводит не менее 5 учебных часов в неделю в течение каждого года обучения, всего не менее 340 учебных часов.
Натуральное число. Ряд натуральных чисел. Число 0. Изображение натуральных чисел точками на координатной (числовой) прямой.
Позиционная система счисления. Римская нумерация как пример непозиционной системы счисления1. Десятичная система счисления.
Сравнение натуральных чисел, сравнение натуральных чисел с нулём.
Способы сравнения. Округление натуральных чисел.
Сложение натуральных чисел; свойство нуля при сложении. Вычитание как действие, обратное сложению. Умножение натуральных чисел; свойства нуля и единицы при умножении. Деление как действие, обратное умножению. Компоненты действий, связь между ними. Проверка результата арифметического действия. Переместительное и сочетательное свойства (законы) сложения и умножения, распределительное свойство (закон) умножения.
Использование букв для обозначения неизвестного компонента и записи свойств арифметических действий.
Делители и кратные числа, разложение на множители. Простые и составные числа. Признаки делимости на 2, 5, 10, 3, 9. Деление с остатком.
Степень с натуральным показателем. Запись числа в виде суммы разрядных слагаемых.
Числовое выражение. Вычисление значений числовых выражений; порядок выполнения действий. Использование при вычислениях переместительного и сочетательного свойств (законов) сложения и умножения, распределительного свойства умножения.
Представление о дроби как способе записи части величины. Обыкновенные дроби. Правильные и неправильные дроби. Смешанная дробь;
1 Здесь и далее курсивом обозначены темы, изучение которых проводится в ознакомительном плане. Педагог самостоятельно определяет объем изучаемого материала.
представление смешанной дроби в виде неправильной дроби и выделение целой части числа из неправильной дроби. Изображение дробей точками на числовой прямой. Основное свойство дроби. Сокращение дробей. Приведение дроби к новому знаменателю. Сравнение дробей.
Сложение и вычитание дробей. Умножение и деление дробей; взаимно- обратные дроби. Нахождение части целого и целого по его части.
Десятичная запись дробей. Представление десятичной дроби в виде обыкновенной. Изображение десятичных дробей точками на числовой прямой. Сравнение десятичных дробей.
Арифметические действия с десятичными дробями. Округление десятичных дробей.
Решение текстовых задач арифметическим способом. Решение логических задач. Решение задач перебором всех возможных вариантов. Использование при решении задач таблиц и схем.
Решение задач, содержащих зависимости, связывающие величины: скорость, время, расстояние; цена, количество, стоимость. Единицы измерения: массы, объёма, цены; расстояния, времени, скорости. Связь между единицами измерения каждой величины.
Решение основных задач на дроби.
Представление данных в виде таблиц, столбчатых диаграмм.
Наглядные представления о фигурах на плоскости: точка, прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Угол. Прямой, острый, тупой и развёрнутые углы.
Длина отрезка, метрические единицы длины. Длина ломаной, периметр многоугольника. Измерение и построение углов с помощью транспортира.
Наглядные представления о фигурах на плоскости: многоугольник; прямоугольник, квадрат; треугольник, о равенстве фигур.
Изображение фигур, в том числе на клетчатой бумаге. Построение конфигураций из частей прямой, окружности на нелинованной и клетчатой бумаге. Использование свойств сторон и углов прямоугольника, квадрата.
Площадь прямоугольника и многоугольников, составленных из прямоугольников, в том числе фигур, изображённых на клетчатой бумаге. Единицы измерения площади.
Наглядные представления о пространственных фигурах: прямоугольный параллелепипед, куб, многогранники. Изображение простейших многогранников. Развёртки куба и параллелепипеда. Создание моделей многогранников (из бумаги, проволоки, пластилина и др.).
Объём прямоугольного параллелепипеда, куба. Единицы измерения объёма.
Проведение оценки достижений планируемых результатов освоения учебного предмета проводится в форме текущего и рубежного контроля в виде: контрольные работы, самостоятельные работы, зачеты, математические диктанты, практические работы, письменный ответ по индивидуальным карточкам-заданиям, тестирование.
Для обучающихся с ЗПР возможно изменение формулировки заданий на
«пошаговую», адаптацию предлагаемого обучающемуся тестового (контрольно- оценочного) материала: использование устных и письменных инструкций, упрощение длинных сложных формулировок инструкций, решение с опорой на алгоритм, образец, использование справочной информации.
5 класс
Контрольная работа № 1. Тема. Натуральные числа.
Контрольная работа № 2. Тема. Действия с натуральными числами.
Контрольная работа № 3. Тема. Использование свойств действий при вычислениях.
Контрольная работа № 4. Тема. Углы и многоугольники. Контрольная работа № 5. Тема. Делимость чисел.
Контрольная работа № 6. Тема. Обыкновенные дроби. Контрольная работа № 7. Тема. Сложение и вычитание дробей. Контрольная работа № 8. Тема. Умножение и деление дробей.
Контрольная работа № 9. Тема. Десятичные дроби. Сравнение десятичных дробей.
Контрольная работа №10. Действия с десятичными дробями. Контрольная работа № 11. Тема. Итоговая контрольная работа.
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА
«МАТЕМАТИКА» НА УРОВНЕ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ
мотивация к обучению математике и целенаправленной познавательной деятельности;
повышение уровня своей компетентности через практическую деятельность, требующую математических знаний, в том числе умение учиться у других людей;
способность осознавать стрессовую ситуацию, быть готовым действовать в отсутствие гарантий успеха;
способность обучающихся с ЗПР к осознанию своих дефицитов и проявление стремления к их преодолению;
способность к саморазвитию, умение ставить достижимые цели;
умение различать учебные ситуации, в которых можно действовать самостоятельно, и ситуации, где следует воспользоваться справочной информацией или другими вспомогательными средствами;
способность переносить полученные в ходе обучения знания в актуальную ситуацию (при решении житейских задач, требующих математических знаний); способность ориентироваться в требованиях и правилах проведения
промежуточной и итоговой аттестации;
овладение основами финансовой грамотности.
устанавливать причинно-следственные связи в ходе усвоения математического материала;
выявлять дефицит данных, необходимых для решения поставленной задачи;
с помощью учителя выбирать способ решения математической задачи (сравнивать возможные варианты решения);
применять и преобразовывать знаки и символы в ходе решения математических задач;
устанавливать искомое и данное при решении математической задачи; понимать и интерпретировать информацию различных видов и форм
представления;
иллюстрировать решаемые задачи графическими схемами; эффективно запоминать и систематизировать информацию.
понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации.
организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками в процессе решения задач;
взаимодействовать и находить общие способы работы; работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
прогнозировать возникновение конфликтов при наличии разных точек зрения и разрешать конфликты на основе учёта интересов и позиций всех участников;
аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности;
выполнять свою часть работы, достигать качественного результата и координировать свои действия с другими членами команды;
оценивать качество своего вклада в общий продукт.
ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.
формулировать и удерживать учебную задачу, составлять план и последовательность действий;
осуществлять контроль по образцу и вносить необходимые коррективы; контролировать процесс и результат учебной математической
деятельности;
адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
сличать способ действия и его результат с заданным эталоном с целью обнаружения отклонений и отличий от эталона.
предвидеть трудности, которые могут возникнуть при решении учебной задачи;
понимать причины, по которым не был достигнут требуемый результат деятельности, определять позитивные изменения и направления, требующие дальнейшей работы;
регулировать способ выражения эмоций.
Результаты освоения учебного предмета «Математика (включая алгебру, геометрию, вероятность и статистику)», распределенные по годам обучения, формулируются по принципу добавления новых результатов от года к году, уже названные в предыдущих годах позиции, как правило, дословно не повторяются,
но учитываются (результаты очередного года по умолчанию включают результаты предыдущих лет).
ПЛАНИРУЕМЫЕ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРИМЕРНОЙ РАБОЧЕЙ ПРОГРАММЫ КУРСА «МАТЕМАТИКА» (ПО ГОДАМ ОБУЧЕНИЯ)
Освоение учебного курса «Математика» в 5–6 классах основной школы должно обеспечивать достижение следующих предметных образовательных результатов:
Ориентироваться в понятиях и оперировать на базовом уровне терминами, связанными с натуральными числами, обыкновенными и десятичными дробями.
Сравнивать и упорядочивать натуральные числа, сравнивать в простейших случаях обыкновенные дроби, десятичные дроби.
Соотносить точку на координатной (числовой) прямой с соответствующим ей числом и изображать натуральные числа точками на координатной (числовой) прямой.
Выполнять арифметические действия с натуральными числами, с обыкновенными дробями в простейших случаях.
Выполнять проверку, прикидку результата вычислений. Округлять натуральные числа.
Решать текстовые задачи арифметическим способом и с помощью организованного конечного перебора всех возможных вариантов (при необходимости с направляющей помощью).
Решать задачи, содержащие зависимости, связывающие величины: скорость, время, расстояние; цена, количество, стоимость (при необходимости с использованием справочной информации).
Использовать краткие записи, схемы, таблицы, обозначения при решении задач.
Пользоваться основными единицами измерения: цены, массы; расстояния, времени, скорости; выражать одни единицы величины через другие (при необходимости с опорой на справочную информацию).
Извлекать информацию, представленную в таблице, на столбчатой диаграмме, интерпретировать представленные данные, использовать данные при решении задач.
Пользоваться геометрическими понятиями: точка, прямая, отрезок, луч,
угол, многоугольник, окружность, круг.
Приводить примеры объектов окружающего мира, имеющих форму изученных геометрических фигур.
Использовать терминологию, при необходимости по визуальной опоре, связанную с углами: вершина, сторона; с многоугольниками: угол, вершина, сторона, диагональ; с окружностью: радиус, диаметр, центр.
Изображать изученные геометрические фигуры на нелинованной и клетчатой бумаге с помощью циркуля и линейки (после совместного анализа).
Находить длины отрезков непосредственным измерением с помощью линейки, строить отрезки заданной длины; строить окружность заданного радиуса.
Использовать свойства сторон и углов прямоугольника, квадрата для их построения, вычисления площади и периметра.
Вычислять периметр и площадь квадрата, прямоугольника, фигур, составленных из прямоугольников, в том числе фигур, изображённых на клетчатой бумаге.
Пользоваться основными метрическими единицами измерения длины, площади; выражать одни единицы величины через другие (при необходимости с опорой на справочную информацию).
Распознавать параллелепипед, куб, использовать терминологию: вершина, ребро грань, измерения; находить измерения параллелепипеда, куба.
Вычислять объём куба, параллелепипеда по заданным измерениям (с опорой на алгоритм учебных действий), пользоваться единицами измерения объёма.
Решать несложные задачи на измерение геометрических величин в практических ситуациях (при необходимости с визуальной опорой).
5 класс (не менее 170 ч) ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
Название раздела (темы) курса (число часов) |
Основное содержание |
Основные виды деятельности обучающихся |
Натуральные числа. Действия с натуральными числами (43 ч) |
Десятичная система счисления. Ряд натуральных чисел. Натуральный ряд. Число 0. Натуральные числа на коор-динатной прямой. Сравнение, округление натуральных чисел. Арифметические действия с натуральными числами. Свойства нуля при сложении и -умножении, свойства единицы при умножении. Переместительное и сочетательное свойства сложения и умножения, распределительное свойство умножения. Делители и кратные числа, разложение числа на множители. Деление с остатком. Простые и составные числа. Признаки делимости на 2, 5, 10, 3, 9. Степень с натуральным показателем. Числовые выражения; порядок действий. Решение текстовых задач на все арифметические действия, на движение и покупки.
|
Читать, записывать, сравнивать натуральные числа; участвовать в обсуждении способов упорядочивания чисел. Изображать координатную прямую, отмечать числа точками на координатной прямой, находить координаты точки. Исследовать свойства натурального ряда, чисел 0 и 1 при сложении и умножении. Использовать правило округления натуральных чисел при необходимости с опорой на алгоритм правила. Выполнять арифметические действия с натуральными числами, вычислять значения числовых выражений со скобками и без скобок. Записывать произведение в виде степени, читать степени, использовать терминологию (основание, показатель), вычислять значения степеней при необходимости с визуальной опорой. Выполнять прикидку и оценку значений числовых выражений, предлагать и применять приёмы проверки вычислений. Использовать при вычислениях переместительное и сочетательное свойства сложения и умножения, распределительное свойство умножения; формулировать и применять правила преобразования числовых выражений на основе свойств арифметических действий при необходимости с направляющей помощью. Формулировать определения делителя и кратного (с опорой на алгоритм правила), называть делители и кратные числа; распознавать простые и составные числа; формулировать и применять признаки делимости на 2, 3, 5, 9, 10, (с опорой на алгоритм правила); применять алгоритм разложения числа на простые множители; находить остатки от деления и неполное частное. Распознавать истинные и ложные высказывания о натуральных числах, приводить примеры и контрпримеры, строить высказывания и отрицания высказываний о свойствах натуральных чисел с опорой на образец. Решать текстовые задачи арифметическим способом, использовать зависимости между величинами (скорость, время, расстояние; цена, количество, стоимость и др.) при необходимости с использованием справочной информации: анализировать текст задачи, переформулировать условие, извлекать необходимые данные, устанавливать зависимости между величинами при необходимости с направляющей помощью. Моделировать ход решения задачи с помощью рисунка, схемы, таблицы. Приводить, разбирать различные решения, записи решений текстовых задач. С помощью педагога оценивать полученный результат, осуществлять самоконтроль, проверяя ответ на соответствие условию, находить ошибки. Решать задачи с помощью перебора всех возможных вариантов. Знакомиться с историей развития арифметики. |
Наглядная геометрия. Линии на плоскости (12 ч) |
Точка, прямая, отрезок, луч. Ломаная. Измерение длины отрезка, метрические единицы измерения длины. Окружность и круг. Практическая работа «Построение узора из окружностей». Угол. Прямой, острый, тупой и развёрнутый углы. Измерение углов. Практическая работа «Построение углов». |
Распознавать на чертежах, рисунках, описывать, используя терминологию, и изображать с помощью чертёжных инструментов (при необходимости по визуальной опоре): точку, прямую, отрезок, луч, угол, ломаную, окружность. Распознавать, приводить примеры объектов реального мира, имеющих форму изученных фигур, оценивать их линейные размеры. Использовать линейку и транспортир как инструменты для построения и измерения: измерять длину отрезка, величину угла; строить отрезок заданной длины, угол, заданной величины; откладывать циркулем равные отрезки, строить окружность заданного радиуса. Изображать конфигурации геометрических фигур из отрезков, окружностей, их частей на нелинованной и клетчатой бумаге; предлагать, описывать и обсуждать способы, алгоритмы построения после совместного анализа. Распознавать и изображать на нелинованной и клетчатой бумаге прямой, острый, тупой, развёрнутый углы; сравнивать углы. Вычислять длины отрезков, ломаных. Понимать и использовать при решении задач зависимости между единицами метрической системы мер; знакомиться с неметрическими системами мер; выражать длину в различных единицах измерения при необходимости с опорой на справочную информацию. Исследовать фигуры и конфигурации, используя цифровые ресурсы. |
Обыкновенные дроби (48 ч) |
Дробь. Правильные и неправильные дроби. Основное свойство дроби. Сравнение дробей. Сложение и вычитание обыкновенных дробей. Смешанная дробь. Умножение и деление обыкновенных дробей; взаимно-обратные дроби. Решение текстовых задач, содержащих дроби. Основные задачи на дроби. Применение букв для записи математических выражений и предложений. |
Моделировать в графической, предметной форме, с помощью компьютера понятия и свойства, связанные с обыкновенной дробью. Читать и записывать, сравнивать обыкновенные дроби, предлагать и обсуждать способы упорядочивания дробей. Изображать обыкновенные дроби точками на координатной прямой; использовать координатную прямую для сравнения дробей. Формулировать, записывать с помощью букв основное свойство обыкновенной дроби с опорой на правило; использовать основное свойство дроби для сокращения дробей и приведения дроби к новому знаменателю в простейших случаях. Представлять по образцу смешанную дробь в виде неправильной и выделять целую часть числа из неправильной дроби. Выполнять арифметические действия с обыкновенными дробями в простых случаях; применять свойства арифметических действий для рационализации вычислений. Выполнять прикидку и оценку результата вычислений; предлагать и применять приёмы проверки вычислений. Проводить исследования свойств дробей, опираясь на числовые эксперименты (в том числе с помощью компьютера). Распознавать истинные и ложные высказывания о дробях, приводить примеры и контрпримеры. Решать простейшие текстовые задачи, содержащие дробные данные, и задачи на нахождение части целого и целого по его части; выявлять их сходства и различия. Моделировать ход решения задачи с помощью рисунка, схемы, таблицы. Приводить, разбирать, оценивать различные решения, записи решений текстовых задач при необходимости с направляющей помощью. С помощью педагога оценивать полученный результат, осуществлять самоконтроль, проверяя ответ на соответствие условию, находить ошибки. Знакомиться с историей развития арифметики. |
Наглядная геометрия. Многоугольники (10 ч)
|
Многоугольники. Четырёхугольник,прямоугольник, квадрат. Треугольник. Площадь и периметр прямоугольника и многоугольников, составленных из прямоугольников, единицы измерения площади. Периметр многоугольника. |
Распознавать, изображать с помощью чертёжных инструментов и от руки, моделировать из бумаги многоугольники. Приводить примеры объектов реального мира, имеющих форму многоугольника, прямоугольника, квадрата, треугольника, оценивать их линейные размеры. Вычислять: периметр треугольника, прямоугольника, многоугольника; площадь прямоугольника, квадрата (при необходимости с опорой на алгоритм учебных действий). Изображать остроугольные, прямоугольные и тупоугольные треугольники. Строить на клетчатой бумаге квадрат и прямоугольник с заданными длинами сторон. Исследовать свойства прямоугольника, квадрата путём эксперимента, наблюдения, измерения, моделирования; сравнивать свойства квадрата и прямоугольника. Распознавать истинные и ложные высказывания о многоугольниках, приводить примеры и контрпримеры. Исследовать зависимость площади квадрата от длины его стороны. Использовать свойства квадратной сетки для построения фигур; разбивать прямоугольник на квадраты, треугольники; составлять фигуры из квадратов и прямоугольников и находить их площадь, разбивать фигуры на прямоугольники и квадраты и находить их площадь (при необходимости с направляющей помощью). Выражать величину площади в различных единицах измерения метрической системы мер, использовать зависимости между метрическими единицами измерения площади при необходимости с опорой на справочную информацию. Знакомиться с примерами применения площади и периметра в практических ситуациях. Решать задачи из реальной жизни, при необходимости с опорой на алгоритм правила, обсуждать различные способы решения задач. |
Десятичные дроби (38 ч) |
Десятичная запись дробей. Сравнение десятичных дробей. Действия с десятичными дробями. Округление десятичных дробей. Решение текстовых задач, содержащих дроби. Основные задачи на дроби. |
Представлять десятичную дробь в виде обыкновенной, читать и записывать, сравнивать десятичные дроби, предлагать и обсуждать способы упорядочивания десятичных дробей. Изображать десятичные дроби точками на координатной прямой. Выявлять сходства и различия правил арифметических действий с натуральными числами и десятичными дробями, после совместного анализа. Выполнять арифметические действия с десятичными дробями; выполнять прикидку и оценку результата вычислений. Применять свойства арифметических действий для рационализации вычислений. Применять правило округления десятичных дробей, при необходимости с визуальной опорой. Проводить исследования свойств десятичных дробей, опираясь на числовые эксперименты (в том числе с помощью компьютера). Распознавать истинные и ложные высказывания о дробях, приводить примеры и контрпримеры, строить высказывания и отрицания высказываний. Решать простейшие текстовые задачи, содержащие дробные данные, и на нахождение части целого и целого по его части; выявлять их сходства и различия. Моделировать ход решения задачи с помощью рисунка, схемы, таблицы. Разбирать различные решения, записи решений текстовых задач. Оперировать дробными числами в реальных жизненных ситуациях. С помощью педагога оценивать полученный результат, осуществлять самоконтроль, проверяя ответ на соответствие условию, находить ошибки. Знакомиться с историей развития арифметики |
Наглядная геометрия. Тела и фигуры в пространстве (9 ч) |
Многогранники. Изображение многогранников. Модели пространственных тел. Прямоугольный параллелепипед, куб. Развёртки куба и параллелепипеда. Объём куба, прямоугольного параллелепипеда. |
Распознавать на чертежах, рисунках, в окружающем мире прямоугольный параллелепипед, куб, многогранники, описывать, используя терминологию, оценивать линейные размеры. Приводить примеры объектов реального мира, имеющих форму многогранника, прямоугольного параллелепипеда, куба. Изображать куб на клетчатой бумаге. Исследовать свойства куба, прямоугольного параллелепипеда, многогранников, используя модели при необходимости с направляющей помощью. Распознавать развёртки куба и параллелепипеда. Моделировать куб и параллелепипед из бумаги и прочих материалов, по образцу. Находить измерения, вычислять площадь поверхности; объём куба, прямоугольного параллелепипеда с опорой на алгоритм учебных действий; исследовать зависимость объёма куба от длины его ребра. Наблюдать и проводить аналогии между понятиями площади и объёма, периметра и площади поверхности. Распознавать истинные и ложные высказывания о многогранниках, приводить примеры и контрпримеры. Решать задачи из реальной жизни. |
Повторение и обобщение (10 ч) |
Повторение основных понятий и методов курса 5 класса, обобщение знаний. |
Вычислять значения выражений, содержащих натуральные числа, обыкновенные и десятичные дроби, выполнять преобразования чисел при необходимости с направляющей помощью. Выбирать способ сравнения чисел, вычислений, применять свойства арифметических действий для рационализации вычислений. Осуществлять самоконтроль выполняемых действий и самопроверку результата вычислений. Решать простейшие задачи из реальной жизни, применять математические знания для решения задач из других учебных предметов. Решать простейшие задачи разными способами, сравнивать способы решения задачи, выбирать рациональный способ. |
Скачано с www.znanio.ru
© ООО «Знанио»
С вами с 2009 года.