Рабочая программа по физике 7 класс УМК Перышкин 68 часов
Оценка 4.8

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Оценка 4.8
Образовательные программы
docx
физика
7 кл
11.01.2018
Рабочая программа по физике 7 класс УМК Перышкин 68 часов
Публикация является частью публикации:
пояснительная 7-9 класс.docx
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Программа   составлена   на   основе   Фундаментального   ядра   содержания   общего образования и Требований к результатам обучения, представленных в Стандарте основного общего образования. Программа определяет содержание и структуру учебного материала, последовательность его изучения, пути формирования системы знаний, умений и способов деятельности,   развития,   воспитания   и   социализации   учащихся.   Программа   может использоваться в общеобразовательных учреждениях разного профиля. Программа включает пояснительную записку, в которой прописаны требования к личностным и метапредметным результатам   обучения;   содержание   курса   с   перечнем   разделов   с   указанием   числа   часов, отводимых   на   их   изучение,   и   требованиями   к   предметным   результатам   обучения; тематическое   планирование   с   определением   основных   видов   учебной   деятельности школьников; Школьный   курс   физики   –   системообразующий   для   предметов   естественнонаучного цикла, т.к. физические законы, лежащие в основе мироздания, являются основой содержания курсов химии, биологии, географии и астрономии. Физика вооружает школьников научным методом познания, позволяющим получать объективные знания об окружающем мире. В 7 ­8 классах   происходит   знакомство     с   физическими   явлениями,   методом   научного   познания, формирование   основных   физических   понятий,   приобретение   умений   измерять   физические величины, проводить лабораторный эксперимент по заданной схеме. В 9 классе начинается изучение основных физических законов, лабораторные работы становятся более сложными, школьники учатся планировать эксперимент самостоятельно. Цели изучения физики:   Усвоение учащимися смысла основных понятий и законов физики, взаимосвязи между ними  Формирование   системы   знаний   о   природе,   ее   фундаментальных   законах   для построения представлений о физической картине мира;  Систематизация знаний о  многообразии объектов и явлений природы  Формирование     убежденности   в   познавательности   окружающего   мира   и достоверности научных методов его изучения  Организация экологического мышления  и ценностного отношения к природе  Развитие   познавательных   интересов   и   творческих   способностей   учащихся,   а также   интереса   к   расширению   и   углублению   физических   знаний   и   выбора физики как профильного предмета. Достижение целей обеспечивается решением следующих задач ­знакомство   учащихся   с   методом   научного   познания   и   методами   исследования объектов и явлений природы; ­приобретение   учащимися   знаний   о   механических,   тепловых,   электромагнитных   и квантовых явлениях, физических величинах, характеризующих эти явления; ­   развитие   мышления   учащихся,   формирование   у   них   умений   самостоятельно приобретать и применять знания, наблюдать и объяснять физические явления; ­ овладение школьными знаниями об экспериментальных фактах, понятиях, законах, теориях,   методах   физической   науки;   о   современной   научной   картине   мира;   о   широких возможностях применения физических законов в технике и технологии; ­ усвоение школьниками идей единства строения материи и неисчерпаемости процесса ее познания, понимание роли практики в познании физических явлений и законов; ­ формирование познавательного интереса к физике и технике, развитие творческих способностей,   осознанных   мотивов   учения;   подготовка   к   продолжению   образования   и сознательному выбору профессии 2 ­понимание   учащимися   отличий   научных   данных   от   непроверенной   информации, ценности науки для удовлетворения бытовых , производственных и культурных потребностей человека Общая характеристика учебного курса Данная   рабочая   программа   по   физике   разработана   в   соответствии   с   положением Закона «Об образовании», требованиями ФГОС, составлена на основе программы основного общего образования. Физика.  7­9 классы./ Сост. Тихонова Е.Н. ­ М.: Дрофа, 2015 год. Авторы программы: Е.М.Гутник, А.В.Перышкин, Н.В. Филонович Предлагаемая рабочая программа реализуется в учебниках А.В. Перышкина «Физика» для 7, 8 классов и А.В. Перышкина, Е.М.Гутник «Физика» для 9 класса системы «Вертикаль». Методологические основы программы строятся на системно ­ деятельностном подходе. Описание места учебного курса в учебном плане Программа   реализуется   за   счет   часов   БУП,   формируемого   участниками   ОП ориентирована на учащихся 7­9 классов, рассчитана на 3 года обучения 238 часов, в том числе 7,8 по 68 часов из расчета 2 учебных часа в неделю; в 9 классе 102 часа из расчета 3 часа в неделю. Результаты освоения курса Личностные результаты  Сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;  Убежденность   в   познании   природы,   в   необходимости   разумного   использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение   к   творцам   науки   и   техники,   отношение   к   физике   как   к   элементу общечеловеческой культуры;  Самостоятельность в приобретении новых знаний и практических умений;  Готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;  Мотивация   образовательной   деятельности   на   основе   личностно­ориетированного подхода;  Формирование   ценностных   отношений   друг   к  другу,   учителю,   авторам   открытий   и изобретений, результатам обучения; Метапредметные результаты  Овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов   своей   деятельности,   умениями   предвидеть   возможные   результаты своих действий;  Понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими   моделями   и   реальными   объектами,   овладение   универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной   проверки   выдвигаемых   гипотез,   разработки   теоретических моделей процессов или явлений;  Формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной,   образной,   символической   формах,   анализировать   и   перерабатывать полученную   информацию   в   соответствии   с   поставленными   задачами,   выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его; 3  Приобретение  опыта   самостоятельного  поиска,  анализа  и  отбора  информации  с использованием различных источников и новых информационных технологий для решения познавательных задач;  Развитие монологической и диалогической речи, умение выражать свои мысли и способности   выслушивать   собеседника,   понимать   его   точку   зрения,   признавать право другого человека  на иное мнение;  Освоение   приемов   действий   в   нестандартных   ситуациях,   овладение эвристическими методами решения проблем;  Формирование умений работать в группе   с выполнением различных социальных ролей. Представлять и отстаивать свои взгляды и убеждения, вести дискуссию; Общими предметными результатами обучения по данному курсу являются:    —   умение   пользоваться   методами   научного   исследования   явлений   природы: проводить   наблюдения,   планировать   и   выполнять   эксперименты,   обрабатывать результаты   измерений,   представлять   результаты   измерений   с   помощью   таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять   результаты   и   делать   выводы,   оценивать   границы   погрешностей результатов измерений;   —   развитие   теоретического   мышления   на   основе   формирования   умений устанавливать факты, различать причины и следствия, использовать физические модели,   выдвигать   гипотезы,   отыскивать   и   формулировать   доказательства выдвинутых гипотез. Конкретные Предметные результаты обучения физике в основной школе представлены в содержании курса по темам. Содержание учебного курса 7 класс (68 ч, 2 ч в неделю) Введение (4 ч) Физика – наука о природе. Физические явления. Физические свойства тел. Наблюдения и   описание   физических   явлений.   Физические   величины.   Измерение   физических   величин: длины,   времени,   температуры.   Физические   приборы.   Международная   система   единиц. Точность и погрешность измерений. Физика и техника. Фронтальная лабораторная работа 1. Определение цены деления измерительного прибора. Предметными результатами обучения по данной теме являются:  — понимание физических терминов: тело, вещество, материя;  —   умение   проводить   наблюдения   физических   явлений;   измерять   физические   величины: расстояние, промежуток времени, температуру; определять цену деления шкалы прибора с учетом погрешности измерения;  —   понимание   роли   ученых   нашей   страны   в   развитии   современной   физики   и   влиянии   на технический и социальный прогресс. Первоначальные сведения о строении вещества (6 ч) Строение   вещества.   Опыты,   доказывающие   атомное   строение   вещества.   Тепловое движение   атомов   или   молекул.   Броуновское   движение.   Диффузия.     Притяжение   и отталкивание   молекул.   Агрегатные   состояния   вещества.   Модели   строения   твердых   тел, жидкостей и газов. Объяснение свойств газов, жидкостей и твердых тел на основе МКТ. Фронтальная лабораторная работа 2. Определение  размеров малых тел. Предметными результатами обучения по данной теме являются:  4 —   понимание   и   способность   объяснять   физические   явления:   диффузия,   большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел;  — владение экспериментальными методами исследования при определении размеров малых тел;  — понимание причин броуновского движения, смачивания и не смачивания тел; различия в молекулярном строении твердых тел, жидкостей и газов;  — умение пользоваться СИ и переводить единицы измерения физических величин в кратные и дольные единицы;  — умение  использовать полученные знания  в повседневной  жизни (быт, экология,  охрана окружающей среды). Взаимодействие тел (22 ч) Механическое движение. Траектория. Путь. Равномерное и неравномерное движение. Скорость. Графики зависимости пути и модуля скорости от времени движения. Инерция. Инертность тел. Взаимодействие тел. Масса тела. Измерение массы тела. Плотность вещества. Сила.. Сила тяжести. Сила упругости. Вес. Связь между силой тяжести и массой. Закон Гука. Сила   тяжести   на   других   планетах.   Динамометр.   Сложение   сил,   действующих   по   одной прямой.   Равнодействующая   двух   сил.   Сила   трения.   Физическая   природа   небесных   тел Солнечной системы. Фронтальные лабораторные работы. 3. Измерение массы тела на рычажных весах.  4. Измерение объёма тела. 5. Измерение плотности твёрдого тела. 6. Градуирование пружины и измерение сил динамометром. 7. Измерение силы трения с помощью динамометра Предметными результатами обучения по данной теме являются:  —   понимание   и   способность   объяснять   физические   явления:   механическое   движение, равномерное и неравномерное движение, инерция, всемирное тяготение; — умение измерять скорость, массу, силу, вес, силу трения скольжения, силу трения качения, объем, плотность тела, равнодействующую двух сил, действующих на тело и направленных в одну и в противоположные стороны;  — владение экспериментальными методами исследования зависимости: пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести тела от его массы, силы трения   скольжения   от   площади   соприкосновения   тел   и   силы,   прижимающей   тело   к поверхности (нормального давления);   —  понимание   смысла   основных   физических   законов:   закон  всемирного   тяготения,   закон Гука;  — владение способами выполнения расчетов при нахождении: скорости (средней скорости), пути, времени, силы тяжести, веса тела, плотности тела, объема, массы, силы упругости, равнодействующей двух сил, направленных по одной прямой;   — умение находить связь между физическими величинами: силой тяжести и массой тела, скорости со временем и путем, плотности тела с его массой и объемом, силой тяжести и весом тела;  — умение переводить физические величины из несистемных в СИ и наоборот;  — понимание принципов действия динамометра, весов, встречающихся в повседневной жизни, и способов обеспечения безопасности при их использовании;   — умение использовать полученные знания в повседневной жизни (быт, экология, охрана окружающей среды). Давление твёрдых тел, жидкостей и газов (21 ч) 5 Давление. Давление твёрдых тел. Давление газа. Объяснение давления газа на основе молекулярно­кинетических   представлений.   Закон   Паскаля.   Давление   в   жидкости   и   газе. Сообщающиеся   сосуды.   Атмосферное   давление.   Опыт   Торричелли.   Барометр­анероид. Изменение   атмосферного   давления   с   высотой.   Манометры.   Насосы.   Архимедова   сила. Условия плавания тел. Водный транспорт. Воздухоплавание. Фронтальные лабораторные работы. 8. Измерение выталкивающей силы, действующей на погруженное в жидкость тело. 9. Выяснение условий плавания тела в жидкости. Предметными результатами обучения по данной теме являются:  — понимание и способность объяснять физические явления: атмосферное давление, давление жидкостей,   газов   и   твердых   тел,   плавание   тел,   воздухоплавание,   расположение   уровня жидкости   в   сообщающихся   сосудах,   существование   воздушной   оболочки   Землю;   способы уменьшения и увеличения давления;  — умение измерять: атмосферное давление, давление жидкости на дно и стенки сосуда, силу Архимеда;   — владение экспериментальными методами исследования зависимости: силы Архимеда от объема   вытесненной   телом   воды,   условий   плавания   тела   в   жидкости   от   действия   силы тяжести и силы Архимеда;   — понимание смысла основных физических законов и умение применять их на практике: закон Паскаля, закон Архимеда;  — понимание принципов действия барометра­анероида, манометра, поршневого жидкостного насоса, гидравлического пресса и способов обеспечения безопасности при их использовании;  — владение способами выполнения расчетов для нахождения: давления, давления жидкости на дно и стенки сосуда, силы Архимеда в соответствии с поставленной задачей на основании использования законов физики;  — умение  использовать полученные знания  в повседневной  жизни (экология, быт,  охрана окружающей среды).  Работа и мощность. Энергия. (12 ч) Работа силы, действующей по направлению движения тела. Мощность. Простые механизмы. Условия равновесия рычага. Момент силы. Равновесие тел с закреплённой осью вращения. Виды равновесия. Равенство работ при использовании механизмов. КПД механизма. Потенциальная   энергия   поднятого   тела,   сжатой   пружины.   Кинетическая   энергия движущегося тела. Превращение одного вида механической энергии в другой. Энергия рек и ветра. Фронтальные лабораторные работы 10. Выяснение условия равновесия рычага. 11. Измерение КПД при подъёме тела по наклонной плоскости. Предметными результатами обучения по данной теме являются:   — понимание и способность объяснять физические явления: равновесие тел, превращение одного вида механической энергии в другой; —  умение   измерять:   механическую   работу,   мощность,   плечо   силы,   момент   силы,   КПД, потенциальную и кинетическую энергию;  — владение экспериментальными методами исследования при определении соотношения сил и плеч, для равновесия рычага; — понимание смысла основного физического закона: за­ кон сохранения энергии; — понимание принципов действия рычага, блока, наклонной плоскости и способов обеспечения безопасности при их использовании; 6 —   владение   способами   выполнения   расчетов   для   нахождения:   механической   работы, мощности,   условия   равновесия   сил   на   рычаге,   момента   силы,   КПД,   кинетической   и потенциальной энергии;   — умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды). Итоговая контрольная работа (1 ч) Повторение (2 ч) 8 класс       (68 ч, 2 ч в неделю)  Тепловые явления (23 ч) Тепловое   движение.   Внутренняя   энергия.   Два   способа   изменения   внутренней   энергии: работа и теплопередача. Виды теплопередачи. Количество   теплоты.   Удельная   теплоёмкость   вещества.   Удельная   теплота   сгорания топлива.   Плавление   и   отвердевание   тел.   Температура   плавления.   Удельная   теплота плавления. Испарение и конденсация. Относительная влажность воздуха и её измерение. Кипение. Температура кипения. Удельная теплота парообразования. Объяснение   изменений   агрегатных   состояний   вещества   на   основе   молекулярно­ кинетических представлений. Превращение энергии в механических и тепловых процессах. Двигатель внутреннего сгорания. Паровая турбина. Фронтальные лабораторные работы. 1. Сравнение количеств теплоты при смешивании воды разной температуры. 2. Измерение удельной теплоёмкости твёрдого тела. 3. Измерение влажности воздуха Предметными результатами обучения по данной теме являются:  —   понимание   и   способность   объяснять   физические   явления:   конвекция,   излучение, теплопроводность,   изменение   внутренней   энергии   тела   в   результате   теплопередачи   или работы   внешних   сил,   испарение   (конденсация)   и   плавление   (отвердевание)   вещества, охлаждение жидкости при испарении, кипение, выпадение росы;  — умение измерять: температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, влажность воздуха;  —   владение   экспериментальными   методами   исследования:   зависимости   относительной влажности   воздуха   от   давления   водяного   пара,   содержащегося   в   воздухе   при   данной температуре;   давления   насыщенного   водяного   пара;   определения   удельной   теплоемкости вещества;   —   понимание   принципов   действия   конденсационного   и   волосного   гигрометров, психрометра, двигателя внутреннего сгорания, паровой турбины и способов обеспечения без­ опасности при их использовании;   —   понимание   смысла   закона   сохранения   и   превращения   энергии   в   механических   и тепловых процессах и умение применять его на практике;  — овладение способами выполнения расчетов для нахождения: удельной теплоемкости, количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении, удельной   теплоты   сгорания   топлива,   удельной   теплоты   плавления,   влажности   воздуха, удельной теплоты парообразования и конденсации, КПД теплового двигателя;  — умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды). Электрические явления (29 ч) Электризация   тел.   Два   рода   электрических   зарядов.   Взаимодействие   заряженных   тел. Проводники,   диэлектрики   и   полупроводники.   Электрическое   поле.   Закон   сохранения электрического   заряда.   Делимость   электрического   заряда.   Электрон.   Строение   атома. 7 Электрический ток. Действие электрического поля на электрические заряды. Источники тока. Электрическая цепь. Сила тока. Электрическое напряжение. Электрическое сопротивление. Закон Ома для  участка  цепи. Последовательное  и параллельное соединение  проводников. Работа   и   мощность   электрического   тока.   Закон   Джоуля—Ленца.   Конденсатор.   Правила безопасности при работе с электроприборами.  Фронтальные лабораторные работы. 4. Сборка электрической цепи и измерение силы тока в её различных участках. 5. Измерение напряжения на различных участках электрической цепи. 6. 7. Измерение сопротивления проводника с помощью амперметра и вольтметра. 8. Измерение работы и мощности электрического тока. Регулирование силы тока реостатом. Предметными результатами обучения по данной теме являются:   —   понимание   и   способность   объяснять   физические   явления:   электризация   тел, нагревание проводников электрическим током, электрический ток в металлах, электрические явления с позиции строения атома, действия электрического тока;   —   умение   измерять:   силу   электрического   тока,   электрическое   напряжение, электрический заряд, электрическое сопротивление;   —  владение   экспериментальными   методами   исследования   зависимости:   силы   тока  на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала;  — понимание смысла основных физических законов и умение применять их на практике: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца; — понимание принципа действия электроскопа, электрометра, гальванического элемента, аккумулятора,   фонарика,   реостата,   конденсатора,   лампы   накаливания   и   способов обеспечения безопасности при их использовании;   — владение способами выполнения расчетов для нахождения: силы тока, напряжения, сопротивления при параллельном и последовательном соединении проводников, удельного сопротивления проводника, работы и мощности электрического тока, количества теплоты, выделяемого   проводником   с   током,   емкости   конденсатора,   работы   электрического   поля конденсатора, энергии конденсатора;  — умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды, техника безопасности). Электромагнитные явления (5 ч)  Опыт   Эрстеда.   Магнитное   поле.   Магнитное   поле   прямого   тока.   Магнитное   поле катушки с током. Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле  Земли. Взаимодействие магнитов. Действие  магнитного поля  на проводник с током. Электрический двигатель. Фронтальные лабораторные  работы 9. Сборка электромагнита и испытание его действия.  10. Изучение электрического двигателя постоянного тока (на модели).  Предметными результатами обучения по данной теме являются:  — понимание и способность объяснять физические явления: намагниченность железа и стали, взаимодействие магнитов, взаимодействие проводника с током и магнитной стрелки, действие магнитного поля на проводник с током;  — владение экспериментальными методами исследования зависимости магнитного действия катушки от силы тока в цепи;  — умение  использовать полученные знания  в повседневной  жизни (экология, быт,  охрана окружающей среды, техника безопасности). Световые явления (8 ч) 8 Источники света. Прямолинейное распространение света. Отражение света. Законы отражения. Плоское зеркало. Преломление   света.   Линза.   Фокусное   расстояние   линзы.   Построение   изображений, даваемых тонкой линзой. Оптическая сила линзы. Оптические приборы. Разложение белого света на цвета. Цвета тел. Фронтальная лабораторная работа. 10. Получение изображения при помощи линзы. Предметными результатами обучения по данной теме являются:   —   понимание   и   способность   объяснять   физические   явления:   прямолинейное распространение света, образование тени и полутени, отражение и преломление света;  — умение измерять фокусное расстояние собирающей линзы, оптическую силу линзы; — владение экспериментальными методами исследования зависимости: изображения от расположения лампы на различных расстояниях от линзы, угла отражения от угла падения света на зеркало;  — понимание смысла основных физических законов и умение применять их на практике: закон отражения света, закон преломления света, закон прямолинейного распространения света;  — различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы   и   оптическую   ось   линзы,   собирающую   и   рассеивающую   линзы,   изображения, даваемые собирающей и рассеивающей линзой; — умение использовать полученные знания в повседневной жизни (экология, быт, охрана окружающей среды). Итоговая контрольная работа (1 ч) Повторение  (2 ч) 9 класс (102 ч, 3 часа в неделю) Законы взаимодействия и движения тел (37 ч) Материальная точка. Система отсчёта. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное   равноускоренное   движение:   мгновенная   скорость, перемещение.   ускорение, Графики   зависимости   кинематических   величин   от   времени   при   равномерном   и равноускоренном движении. Относительность механического движения. Инерциальные системы отсчёта. Первый, второй и третий законы Ньютона. Свободное падение. Закон всемирного тяготения. Искусственные спутники Земли. Импульс. Закон сохранения импульса. Ракеты. Фронтальные лабораторные работы. 1. Исследование равноускоренного движения без начальной скорости. 2. Измерение ускорения свободного падения. Предметными результатами обучения по данной теме являются:  — понимание и способность описывать и объяснять физические явления: поступательное движение, смена дня и ночи на Земле, свободное падение тел, невесомость, движение по окружности с постоянной по модулю скоростью;   —   знание   и   способность   давать   определения/описания   физических   понятий: относительность   движения,   геоцентрическая   и   гелиоцентрическая   системы   мира;   [первая космическая   скорость],   реактивное   движение;   физических   моделей:   материальная   точка, система отсчета; физических величин: перемещение, скорость равномерного прямолинейного движения, мгновенная скорость и ускорение при равноускоренном прямолинейном движении, скорость и центростремительное ускорение при равномерном движении тела по окружности, импульс;  9 — понимание смысла основных физических законов: законы Ньютона, закон всемирного тяготения, закон сохранения импульса, закон сохранения энергии и умение применять их на практике;   —   умение   приводить   примеры   технических   устройств   и   живых   организмов,   в основе   перемещения   которых   лежит   принцип   реактивного   движения;   знание   и   умение объяснять устройство и действие космических ракетоносителей;  —   умение   измерять:   мгновенную   скорость   и   ускорение   при   равноускоренном прямолинейном движении, центростремительное ускорение при равномерном движении по окружности;   —   умение   использовать   полученные   знания   в   повседневной   жизни   (быт, экология, охрана окружающей среды). Механические колебания и волны. Звук (16 ч) Колебательное   движение.   Колебания   груза   на   пружине.   Свободные   колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. [Гармонические колебания].   Превращение   энергии   при   колебательном   движении.   Затухающие   колебания. Вынужденные   колебания.   Резонанс.   Распространение   колебаний   в   упругих   средах. Поперечные   и   продольные   волны.   Длина   волны.   Связь   длины   волны   со   скоростью   ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. [Интерференция звука].  Фронтальная лабораторная  работа. 3. Исследование зависимости периода и частоты свободных колебаний маятника от его длины. Предметными результатами обучения по данной теме являются:  —   понимание   и   способность   описывать   и   объяснять   физические   явления:   колебания математического и пружинного маятников, резонанс (в том числе звуковой), механические волны, длина волны, отражение звука, эхо;  — знание и способность давать определения физических понятий: свободные колебания, колебательная   система,   маятник,   затухающие   колебания,   вынужденные   колебания,   звук   и условия его распространения; физических величин: амплитуда, период и частота колебаний, собственная   частота   колебательной   системы,   высота,   [тембр],   громкость   звука,   скорость звука; физических моделей: [гармонические колебания], математический маятник;  — владение экспериментальными методами исследования зависимости периода и частоты колебаний маятника от длины его нити. Электромагнитное поле  (26 ч) Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны.   Скорость   распространения   электромагнитных   волн.   Влияние   электромагнитных излучений   на   живые   организмы.   Колебательный   контур.   Получение   электромагнитных колебаний. Принципы радиосвязи и телевидения. [Интерференция света.] Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. [Спектрограф   и   спектроскоп.]   Типы   оптических   спектров.   [Спектральный   анализ.] Поглощение и испускание света атомами. Происхождение линейчатых спектров.  Фронтальная лабораторная работа. 4. Изучение явления электромагнитной индукции. 5. Наблюдение сплошного и линейчатых спектров испускания. Предметными результатами обучения по данной теме являются: 10 — понимание и способность описывать и объяснять физические явления/процессы: электромагнитная индукция, самоиндукция, преломление света, дисперсия света, поглощение и испускание света атомами, возникновение линейчатых спектров испускания и поглощения;  — знание и способность давать определения/описания физических понятий: магнитное поле, линии магнитной индукции, однородное и неоднородное магнитное поле, магнитный поток,   переменный   электрический   ток,   электромагнитное   поле,   электромагнитные   волны, электромагнитные   колебания,   радиосвязь,   видимый   свет;   физических   величин:   магнитная индукция,   индуктивность,   период,   частота   и   амплитуда   электромагнитных   колебаний, показатели преломления света;  — знание формулировок, понимание смысла и умение применять закон преломления света и правило Ленца, квантовых постулатов Бора;   —   знание   назначения,   устройства   и   принципа   действия   технических   устройств: электромеханический   индукционный   генератор   переменного   тока,   трансформатор, колебательный контур, детектор, спектроскоп, спектрограф;  — [понимание сути Строение атома и атомного ядра (17 ч) Радиоактивность как свидетельство сложного строения атомов. Альфа­, бета­ и гамма­ излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Экспериментальные методы   исследования   частиц.   Протонно­нейтронная   модель   ядра.   Физический   смысл зарядового и массового чисел. Изотопы. Правила смещения для альфа­ и бета­распада при ядерных   реакциях.   Энергия   связи   частиц   в   ядре.   Деление   ядер   урана.   Цепная   реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд. Фронтальные лабораторные работы. 6. Измерение естественного радиационного фона дозиметром.  7. Изучение деления ядра атома урана по фотографии треков.  8. Оценка периода полураспада находящихся в воздухе продуктов распада газа радона.  9. Изучение треков заряженных частиц по готовым фотографиям. Предметными результатами обучения по данной теме являются:  —   понимание   и   способность   описывать   и   объяснять   физические   явления: радиоактивность, ионизирующие излучения;  —   знание   и   способность   давать   определения/описания   физических   понятий: радиоактивность,   альфа­,   бета­   и   гамма­частицы;   физических   моделей:   модели   строения атомов,   предложенные   Д.   Томсоном   и   Э.   Резерфордом;   протонно­   нейтронная   модель атомного ядра, модель процесса деления ядра атома урана; физических величин: поглощенная доза излучения, коэффициент качества, эквивалентная доза, период полураспада;  —   умение   приводить   примеры   и   объяснять   устройство   и   принцип   действия технических устройств и установок: счетчик Гейгера, камера Вильсона, пузырьковая камера, ядерный реактор на медленных нейтронах;  — умение измерять: мощность дозы радиоактивного из­ лучения бытовым дозиметром; — знание формулировок, понимание смысла и умение применять: закон сохранения массового числа, закон сохранения заряда, закон радиоактивного распада, правило смещения;  —   владение   экспериментальными   методами   исследования   в   процессе   изучения зависимости мощности излучения продуктов распада радона от времени;  — понимание сути экспериментальных методов исследования частиц;   — умение использовать полученные знания  в повседневной жизни (быт, экология, охрана окружающей среды, техника безопасности и др.). 11 Строение и эволюция Вселенной (5 ч) Состав,   строение   и   происхождение   Солнечной   системы.   Планеты   и   малые   тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной Предметными результатами обучения по данной теме являются:  — представление о составе, строении, происхождении и возрасте Солнечной системы;  —   умение   применять   физические   законы   для   объяснения   движения   планет   Солнечной системы;  —   знать,   что   существенными   параметрами,   отличающими   звезды   от   планет,   являются   их массы и источники энергии (термоядерные реакции в недрах звезд и радиоактивные в недрах планет);   —   сравнивать   физические   и   орбитальные   параметры   планет   земной   группы   с соответствующими параметрами планет­гигантов и находить в них общее и различное;  — объяснять суть эффекта Х. Доплера; формулировать и объяснять суть закона Э. Хаббла, знать, что этот закон явился экспериментальным подтверждением модели нестационарной Вселенной, открытой А. А. Фридманом. Итоговая контрольная работа (1 ч)  12

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов

Рабочая программа по физике 7 класс УМК Перышкин 68 часов
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
11.01.2018