ТЕХНОЛОГИЯ ПРОБЛЕМНО-МОДУЛЬНОГО ПРОЕКТИРОВАНИЯ (НАУЧНАЯ СТАТЬЯ).

  • docx
  • 14.02.2022
Публикация в СМИ для учителей

Публикация в СМИ для учителей

Бесплатное участие. Свидетельство СМИ сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала ПАВЛОВ А.К. ТЕХНОЛОГИЯ ПРОБЛЕМНО-МОДУЛЬНОГО ПРОЕКТИРОВАНИЯ. (НАУЧНАЯ СТАТЬЯ)..docx

Павлов Александр Константинович, -

генеральный директор МИНИОДСПК «ПЕДКАМПУС»
(Российская Федерация: г. Москва – г. Санкт-Петербург –

г. Петрозаводск -  г. Мурманск), -

доктор педагогических наук, профессор,

член-корреспондент, академик МАНЭБ,

Лауреат премии им. М.В. Ломоносова,
Заслуженный деятель науки РФ

ТЕХНОЛОГИЯ ПРОБЛЕМНО-МОДУЛЬНОГО ПРОЕКТИРОВАНИЯ  

(НАУЧНАЯ СТАТЬЯ)

     Технология проблемно-модульного проектирования содержания обучения включает следующие основные этапы:

1. Компоновку учебно-познавательного курса вокруг фундаментальных дидактических методов познавательной деятельности.

2. Определение ядра базового содержания проблемных модулей. Существенным условием отбора этого инварианта является акцент на принципиальном содержании метода познавательной деятельности, обладающем широким общекультурным и прикладным потенциалом.

3. Выделение профессионально-прикладных укрупнённых проблем с учётом специфики различных групп профессий, разрешение которых требует применения научно-понятийного аппарата, адекватного поставленной проблеме.

4. Отбор содержания и определение объёма вариативных модулей, выраженных конкретными методами познавательной деятельности и направленных на решение укрупненных проблем.

     По нашему мнению, проблемно-модульное проектирование обладает широкими возможностями и богатым потенциалом в обеспечении, именно гибкости процесса обучения. Потенциал предлагаемой нами технологии проблемно-модульного обучения заложен в теоретических концепциях, составляющих методологическую основу технологии. В первую очередь, -  это общая теория функциональных систем и ведущие ее принципы: системного квантования, модульности и проблемности. Во-вторых, – это интеграция дидактически адаптированных теорий, вытекающих из перечисленных принципов: теории «сжатия» знаний, теории проблемного и модульного обучения. Целостным качеством, возникающим в результате интеграции этих теорий, и является гибкость, а технология, сконструированная на основе данной интеграция, получила название гибкой технологии проблемно-модульного обучения.

Литература

1. Анохин П. К. Принципиальные вопросы общей теории функциональных систем // Принципы системной организации функций. — М., 1973. - С. 5-61.

2. Балашов Ю. К., Рыжов В. А. Профессиональная подготовка кадров в условиях капитализма. - М.: Высшая школа, 1987.

3. Балк М. Б., Балк Г. Д. О привитии школьникам навыков эвристического мышления // Математика в школе. - 1985. - № 2. -С. 55-60.

4. Башмаков М. И. Математика. - М.: Высшая школа, 1987.

5. Бескин Н.М. Методика геометрии. - М.; Л.: Учпедгиз, 1947.

6. Беспалько В. П. Слагаемые педагогической технологии. -М.: Педагогика, 1989.

7. Боголюбов В. И. Педагогическая технология: эволюция понятия // Сов. педагогика. - 1991. - № 9. - С. 123-128.

8. Б р а д и с В. М. Методика преподавания математики в средней школе. - М.: Учпедгиз, 1954.

9.Буш Г. Я. Основы эвристики для изобретателей. - Рига, 1977.

10. Васильева Т. В. Модули для самообучения // Вестник высшей 'школы. - 1988. - № 6. - С. 86-87.

11. Вевдровская Р. Б. Очерки истории советской дидактики. -— М.: Педагогика, 1982.

12.Вербицкий А. А. Активное обучение в высшей школе: контекстный подход. - М.: Высшая школа, 1991.

13. Гареев В. М. и др. Принципы модульного обучения // Вестник высшей школы. - 1987. - № 8.

14. Германович П. Математика в школах профотбора // Просвещение на транспорте. - 1927.-№ 7-8.

15. Гнеденко Б. В., Черкасов Р. С. О курсе математики в школах Японии // Математика в школе. - 1988. - № 5.

16. Грегори Р. Л. Разумный глаз. - М.: Мир, 1972.

17. Давыдов В. В. Проблемы развивающего обучения. - М.: Педагогика, 1986.

18.3арецкий М. И. За качество урока в школе ФЗУ // За промышленные кадры. - 1933. - № 12. 19. Зенкин А. А. Когнитивная компьютерная графика. - М.: Наука, 1991.

20. Кандрашина Е. Ю. и др. Представление знаний о времени и " пространстве в интеллектуальных системах / Под ред. Д. А. Поспелова - M.: Мир, 1989.

21. Кларин М. В. Педагогическая технология в учебном процессе: Анализ зарубежного опыта. - М.: Знание, 1989.

22. Кудрявцев В. Т. Проблемное обучение: истоки, сущность, перспективы. - М.: Знание, 1991.

23. Ландшеер В. Концепция "минимальной компетентности" // Перспективы: вопросы образования. - 1988. - № 1.

24. Ланков А. В. Математика в трудовой школе: Очерки по методике математики. - М.: Работник просвещения, 1924.

25. Лебединцев К. Ф. Введение в современную методику математики. - Киев: Гос. изд-во Украины, 1925.

26. Лобачевский Н. И. Научно-педагогическое наследие... / Отв. ред. П. С. Александров и Б. Л. Лаптев. - М.: Наука, 1976.

27. Марев И. Методологические основы дидактики. - М.: Педагогика, 1987.

28. Махмутов М. И. Проблемное обучение: Основные вопросы теории. - М.: Педагогика, 1975.

29. М а х м у т о в М. И. Современный урок. - М.: Педагогика, 1985.

30. Метельский Н. В. Психолого-педагогические основы дидактики математики. - Минск: Высшая школа, 1977.

31. Методика преподавания математики в средней школе: Общая методика / Сост. Р. С. Черкасов, А. А. Столяр. - Ml: Просвещение,

32. Минский М. Фреймы для представления знаний. - М.: Энергия,

33. Моделирование педагогических ситуаций / Под ред. Ю. Н. Кулюткина, Г. С. Сухобской. - М.: Педагогика, 1981.

34. Моро М. И., Пышкало A.M. О. совершенствовании методов обучения математике // О совершенствовании методов обучения математике. - М.: Просвещение, 1978. - С. 7-51.

35. Оконь В. Введение в общую дидактику. - М.: Высшая школа, 1990.

36. Петрусинский В. В. Автоматизированные системы интенсивного обучения. - М.: Высшая школа, 1987.

37. Пойа Д. Математическое открытие. - М.: Наука, 1976.

38. Пойа Д. Математика и правдоподобные рассуждения. — М.: Наука, 1975.

39. Приобретение знаний / Пер. с япон. / Под ред. С. Осуги, Ю. Саэки. - М.: Мир, 1990.

40. Представление и использование знаний / Пер. с япон. / Под ред. X. Уэно. - М.: Мир, 1989.

41. Программа-минимум единой трудовой школы. Вторая ступень. - Л., 1925.

42. Рабочая книга по математике: Пособие для изучения математики по лабораторному плану и по аккордной системе / Под ред. Г. А. Понперека. - Ч. 1-3. - М.: Госиздат, 1923.

43. Рогинский В. М. Азбука педагогического труда. - М.: Высшая школа, 1990.

44. Рыбаков А. Система проектов в школе ФЗУ // Жизнь рабочей Школы. - 1930. - № 1. - С. 30-35.

45. Сагалович Г. Математика в комплексной системе преподавания в школе первого концерта. - Минск, 1928.

46. Салмина Н. Г. Знак и символ в обучении. - М.: Изд-во МГУ, 1989.

47. Системный анализ процесса мышления / Под ред. К. Д. Судакова. - М.: Медицина, 1989.

48. Третьяков М. Иллюстрированный метод на уроках математики //Жизнь рабочей школы. - 1929. - № 5. - С. 41-48.

49. Ф о р м ы и методы общеобразовательной подготовки / Под ред. М. И. Махмутова. - М.: Педагогика, 1986.

50. Хамблин Д. Формирование учебных навыков. - М.: Педагогика, 1986.

51. Цирюльников А. Чему учиться: Заметки на полях истории педагогики // Учительская газ. - 1988. - 19,20,21 апр.

52. Чередов И. М. Формы учебной работы в средней школе: Кн. для учителя. - М.: просвещение, 1988.

53. Черкасов Р. С, Отани М. Новая программа по математике в школах Японии // Математика в школе. - 1991. - № 1. - С. 73-75.

54. Шатихвв Л.Г. Структурные матрицы и их применение для исследования систем, - М.: Машиностроение, 1991.

55.Шохор-Троицкий СИ. Геометрия на задачах: (Основной курс). - М.: Изд-во т-ва И. Д. Сытина, 1913.

56. Эйнштейн А. Физика, и реальность. - М.: Наука, 1965.

57. Эделмак Дж., Маунткастл В. Разумный мозг. - М.: Мир, 1981.

58. Эрдниев П. М. Системность знаний и укрупнение дидактической единицы // Сов. педагогика. - 1975. - № 4. - С. 72-80.

59. Юцявичене П. А. Теория и практика модульного обучения. Каунас: Швиеса, 1989.

60. Ястребинецкий Г. А., Блох А. Я. О математическом образовании в средних школах США. // Математика в школе. - 1988. - J* 4. - С. 73-76.

61. Вi11stein R., Lott T. Mathematics for Liberal arts: A problem solving approach. - Menlo Park: Benjamin Cummings, 1986.

62. В1аnк W. Е. Handbook for developing Competency-Based Training Programs. - New-Jersey: Prentice Hall, 1982.

63. Bloom B. S., Broder L. Problem solving processes of college students. Supplementary Education Monograph. - Chicago: University of Chicago Press, 1950.

64. Bransford J. D., Stein S. B. The IDEAL problem solver.-" N-Y.: W.H. Freeman & C, 1984. -U .

65. Вгite11 Т. К. Competency and Exellence Minimum Competency Achivment Testing/Taeger R. M. & Title C.K. (eds). - Berkeley, 1980. -P. 23-29.

66. Сuгсh C. Modular courses in British higher education // A critical yassesment in higher education bulletin. - 1975, Vol. 3. - P. 65-84.

67. Goldschmidt В., Goldschmidt M. Modular Instruction in Higher Education // Higher Education. - 1972. - № 2. - P. 15-32.

68.International Annual on educational technology. - London, 1978-1979.

69. Кilpatriс Т. A retrospective account of the past twenty-five years of research on teaching mathematical problem solving // Teaching and Learning Mathematical Problem Solving: Multiple research perspectives. -London: LEA, 1985. - P. 1-16.

70. Lange V. Geometry in modules: Teacher's Manual. - London: Addison-Wesley P. C, 1986.

71. MadiganS., Rоuse M. Picture memory and visual-generation processes//The American Journal of Psychology.-1974, Vol. 87.-P. 151-158.

72. Modularization and progression: Issues in the 14-19 curriculum: Working Paper. - London: London Univ. Press. - 1989. - № 6.

73. Modularization and the new curricular. - London: FESC Report, 1986; Vol. 19. - № 4.

74. Moon B. Introducing the modular curriculum // The modular curriculum. - London, 1988. - P. 9-21.

75. Noddings N. Small groups as a setting for research on mathematical problem solving // Teaching and Learning Mathematical problem solving. -London; 1985. - P. 345-360.

76. Riss1and E. L. Artificial intelligence and the learning of mathematics: A tutorial sampling // Teaching and Learning Mathematical-problem solving. - London, 1985. - P. 147-176.

77. Russell J. D. Modular Instruction // A Guide to the Design, Selection, Utilization and Evaluation of Modular Materials. - Minneapolis; BPC, 1974.

78. Sсhoenfeld A. H. Mathematical problem solving. - London: Academic Press, 1985.

79.Watkins P. Modular approaches to the secondary curriculum // SCDC. - London, 1986. - P. 12-18.

86. Барабан М.А. О проведении уроков "Анализ контрольной работы" // Математика в школе. - 1988. - № 3. - С. 24-25.

81. Башмаков М.И., Резник Н.А. Развитие визуального мышления на уроках математики // Математика в школе. - 1991. -М 1. - С 4-8.

82. Векслер С. И. Найтии преодолеть ошибку // Математика в школе. - 1989. - № 5. - С. 40-42.

83. Вивюрский В.Я. Обнаружение и исправление ошибок по химии//Сред. спец. образование. - 1989. - № 1. - С. 22-23.

84. 3ив Б . Г. Быстротечные минуты урока // Математика в школе. - 1988. - № 3. - С. 13-17.

85. Методика блочно-модульного обучения / Под ред. О.Е. Лисейчикова и М.А. Чошанова. - Краснодар: Сов. Кубань, 1989. - 123 с.

86. Тетерина Д. Д. Модульная система изучения органической химии//Специалист. - 1992. -№ 3. - С. 5-6.

87. Урок физики в современной школе: Творческий поиск учителей / Сост. Э.М. Браверман. Под ред. В.Г. Разумовского. - М.: Просвещение, 1993.- 288 с

88. Эрдниев П.М. Укрупнение дидактических единиц как технология обучения. - Ч. 1. - М.: Просвещение, 1992. - 175 с.