Тема: Вакуолярная и опорно-двигательная системы клетки.
Оценка 4.6

Тема: Вакуолярная и опорно-двигательная системы клетки.

Оценка 4.6
docx
биология
10 кл
12.05.2020
Тема: Вакуолярная и опорно-двигательная системы клетки.
10.docx

Дата

 

 

Завуч по УР    

Класс

10а

____________Р.С-С.Алиханова

Тема: Вакуолярная и опорно-двигательная системы клетки.

Цель урока: узнать о строении и значении клеточной мембраны и цитоплазмы.

Задачи урока: а) Образовательные: дать представление о строении и функционировании вакуолярной системы клетки; научить анализу блок-схем и рисунков; активизировать познавательную активность; Развивающие: продолжить умение анализировать, сопоставлять, сравнивать, выделять главное; устанавливать причинно-следственные связи; формировать умения работы с картами, схемами.

Тип урока: Комбинированный.

Основные понятия и термины: митохондрии, дыхание, окислительное фосфорилирование, матрикс, кристы, пластиды, хлоропласты, граны, тилакоиды, ламелы, строма, фотосинтез, хромопласты, лейкопласты.

Связь с ранее изученным материалом: Строение клеток.

Методы: Объяснение, беседа.

Ход урока.

 

       I.            Актуализация опорных знаний и мотивация учебной деятельности учащихся.

Вопросы к учащимся:

1.     Дайте определение: что такое мембрана.

2.     Каков химический состав мембран?

3.     Каково строение мембран?

4.     Каковы основные функции и свойства мембран?

5.     Как может осуществляться транспорт веществ через мембрану?

II. Изучение нового материала.

План.

       I.             

                             1.            Опорно-двигательный аппарат.

                             2.            Вакуолярная система.

Рассказ учителя, с частичными записями в тетради.

Под плазмолеммой расположена цитоплазма состоящая из геалоплазмы (цитоплазматического матрикса) и компонентов. Гиалоплазма – прозрачный раствор белков, углеводов и других веществ. содержит цитоскелет, образованный микротрубочками, микрофиламентами и промежуточными филаментами. Гиалоплазма выполняет опорную функцию, обеспечивает передвижение самой цитоплазмы и ее компонентов. В гиалоплазме осуществляются химические реакции.

Циклоз (движение цитоплазмы) осуществляется за счет:

- изменения агрегатного состояния (перехода из золя в гель и обратно);

- цитоскелета (микротрубочки обеспечивают движение хромосом во время деления; микрофиламенты – перемещение хлоропластов и т.д.).

Компоненты клетки делятся на органеллы и включения (непостоянные компоненты).

Включения могут быть трофическими (запасные питательные вещества, продукты распада), секреторными (в больших количествах содержатся в клетках железистого эпителия), специализированными (например, гемоглобин в эритроцитах).

Органеллы – постоянные субклеточные структуры, выполняющие определенные функции. Выделяют органеллы общего и специального значения.

Органеллы специального значения содержат клетки с узкой специализацией. К ним относятся органеллы движения (жгутики, реснички, миофибриллы), нейрофибриллы нервных клеток.

Органеллы общего значения могут быть мембранными и немембранныеми.

К немембранным компонентам относятся:

1. Рибосомы – тельца грибовидной формы. Содержаться на мембранах ЭПС, в гиалоплазме, митохондриях и пластидах. Состоят из белка и р-РНК. В рибосоме выделяют большую и малую субъединицы. Формируются рибосомы в ядре и осуществляют биосинтез белки.

2. Клеточный центр (центросома) – состоит из двух центриолей, соединенных перемычкой. Центриоль – цилиндр, образованный девятью триплетами микротрубочек. Окружены центриоли астросферой. Участвуют в делении клетки. Клеточный центр отсутствует у клеток высших растений.

Мембранные компоненты делят на одномембранные и двумембранные.

Одномембранные компоненты представляют собой систему полостей. Каналов, трубочек, цистерн и пузырьков, тесно взаимосвязанных. Систему одномебранных компонентов часто называют вакуолярной системой.

Вакуолярную систему образуют:

1.ЭПС бывает двух типов. Первый – гранулярная сеть или шероховатый эндоплазматический ретикулум (ШЭР). Представляет собой уплощенные цистерны, на поверхности которых располагаются многочисленные рибосомы или локализованы комплексы рибосом–полирибосомы. Второй – агранулярная сеть или гладкий эндоплазматический ретикулум (ГЭР). Включает в себя систему переплетающихся трубочек, каналов и пузырьков небольшого диаметра, не содержащих рибосом.

Между ШЭР и ГЭР существует структурная взаимосвязь вследствие перехода мембран одного типа в мембраны другого. Каналы и цистерны этих разновидностей ЭПС не разграничены специальными структурами. Вместе с тем ШЭР и ГЭР представляют собой достаточно дифференцированные органоиды метаболического аппарата клетки, обеспечивающие выполнение разных функций.

К функциям гранулярной сети относится:

- синтез белков;

- транспорт синтезированных белков в аппарат Гольджи;

- разнообразная посттрансляционная обработка белка;

- правильная укладка белковых молекул.

Функции агранулярной сети:

- синтез и расщепление углеводов и липидов;

- транспорт веществ, начальное формирование внутриклеточных мембран;

- транспорт и накопление ионов кальция.

2.Аппарат (комплекс) Гольджи – одномембранный органоид. Описан в 1889 году Гольджи. Локализован около ядра. При специальной окраске различим в оптическом микроскопе (имеет вид сетчатой структуры). Состоит из: уплощенных мешочков (цистерн) – имеют вид дискообразных полостей, расположенных часто группами по 13–15 (диктиосомы). Диаметр цистерн колеблется от 0,2 до 0,65 мкм; крупных вакуолей – образуются в результате расширения цистерн; мелких вакуолей – отшнуровываются от краев цистерн. Их число доходит до нескольких тысяч.

Структура и функция комплекса Гольджи (рисунок 2).

Функции аппарата Гольджи:

- упаковка и накопление синтезированных в клетке веществ (упаковочный центр);

- полимеризация (образуются полисахариды, гликопротеиды, липопротеиды);

- формирование первичных лизосом;

- образование и регенерация мембран.

3.Лизосомы от “лизио – растворяю и “сома” – тело – одномембранные органоиды, имеющие форму пузырьков (диаметр до 2-х мкм). Характерны для клеток животных, грибов, в растениях не выявлены. Различают 4 вида лизосом:

- первичная лизосома – содержит неактивные ферменты, синтезированные рибосомами, накопленными в ЭПС и поступившими в комплекс Гольджи, который упаковывает их в мембранный пузырек.

- вторичная лизосома – гетерофагосома или пищеварительная вакуоль, возникает как результат соединения первичной лизосомы с поглощенным клеткой (путем фаго, и пиноцитоза) чужеродным материалом или собственными компонентами клетки, предназначенными для расщепления. Поглощенный материал постепенно переваривается под действием гидролаз поступивших в фагосому, переваренные вещества проходят через мембрану фагосомы и включаются в состав клетки.

- остаточные тельца – содержат непереваренные вторичными лизосомами питательные вещества. У простейших остаточные тельца выделяются во внешнюю среду. В других случаях они могут длительное время сохраняться в клетке и вызывать различные патологические процессы (у человека известно около 12 врожденных заболеваний, при которых отмечается дисфункция лизосом).

- цитолизосома – образуется при соединении первичной лизосомы с компонентами самой клетки (например, митохондрий или участков ЭПС). Они образуются в ходе различных физиологических (регенерация) и патологических процессов.

Свойства лизосом:

- образуются в комплексе Гольджи.

- содержатся в клетке от 10 до 100 и более.

- содержат около 60 гидролаз (класс ферментов, катализирующих реакции расщепления различных веществ: белков, жиров, углеводов, при участии молекул воды).

Структура и функции лизосом

Функция лизосом – внутриклеточное пищеварение.

Вакуоли – одномембранные органоиды, имеющие вид мешочков, заполненных жидкостью. Образуются из пузырьков ЭПС или аппарата Гольджи.

Структура и функция вакуоли растительной и животной клетки

Функция вакуолей:

- участие в формировании тургорного давления (осмотическое поступление воды);

- обеспечение окраски органов растений (содержит антоциан);

- накопительное пространство (промежуточные продукты обмена растений – глюкоза, лимонная кислота);

- аккумуляция экскреторных веществ (пигменты, алкалоиды);

- выделительная (у пресноводных простейших удаляется вода и растворенные метаболиты).

Генезис и интеграция элементов вакуолярной системы

Вакуоли, ЭПС, ядерная мембрана, КГ объединяются общим понятием – вакуолярная система клетки. Вакуолярная система связана с внеклеточным пространством. В эндоплазматической сети происходит формирование и отпочковывание транспортных пузырьков, которые содержат продукты метаболизма, например белки и липиды. Пузырьки могут содержать экспортируемые вещества и вещества, которые используются внутри клетки. Аппарат Гольджи принимает транспортные пузырьки из эндоплазматической сети. Здесь идет “доработка”; к молекулам присоединяется углеводный “сигнал” при помощи которого молекулы попадают в соответствующий компартмент. Аппарат Гольджи отделяет продукты, подготовленные для включения, в секреторные пузырьки, которые переносят продукты и встраиваются в плазмалемму, или выводят наружу из клетки. Например, мукопротеид из бокаловидных клеток. Другие же секреторные пузырьки, содержащие гидролитические ферменты, превращаются в лизосомы. Они могут переваривать попавшие в них вещества, избыточные органеллы (аутофагия) или целые клетки (автолиз).

5. Микротельца – одномембранные структуры, содержащие ферменты. Выделяют разные виды микротелец. Например, пероксисомы содержат ферменты, осуществляющие биологическое окисление без образования АТФ. Большое количество пероксисом содержится в клетках печени, что способствует обезвреживанию токсических веществ.

Вакуолярная система клетки представляет собой единую систему клетки, отдельные компоненты которой могут переходить друг в друга при перестройке и изменении функции мембран. В ее состав входят: эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли

III. Обобщение, систематизация и контроль знаний и умений учащихся.

Вопросы к учащимся:

1. Для чего клетке нужен опорно-двигательный аппарат?

2. Какие органоиды образуют вакуолярную систему клетки?

3. Какова роль ЭПС и аппарата Гольджи в обеспечении целостности клетки?

4. Что произойдет с клеткой, если в ней разрушатся все лизосом?

IV. Домашнее задание: & 8 прочитать, ответить на вопросы стр.25, записи в тетради выучить.


 

Скачано с www.znanio.ru

Дата Завуч по

Дата Завуч по

Рассказ учителя, с частичными записями в тетради

Рассказ учителя, с частичными записями в тетради

Мембранные компоненты делят на одномембранные и двумембранные

Мембранные компоненты делят на одномембранные и двумембранные

Их число доходит до нескольких тысяч

Их число доходит до нескольких тысяч

Гольджи. - содержатся в клетке от 10 до 100 и более

Гольджи. - содержатся в клетке от 10 до 100 и более

Другие же секреторные пузырьки, содержащие гидролитические ферменты, превращаются в лизосомы

Другие же секреторные пузырьки, содержащие гидролитические ферменты, превращаются в лизосомы
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
12.05.2020