(Мерзликин Роман, Марченко Дмитрий, 10А)
C первых же дней Великой Отечественной Войны огромное число математиков были мобилизованы или ушли на фронт добровольцами. При этом страна потеряла огромное число талантливой молодежи, которая могла бы стать гордостью отечественной науки.
Об этом мы можем судить, во-первых, по тому, что среди возвратившихся после участия в сражениях Великой Отечественной многие стали крупными учеными — профессорами, членами — корреспондентами и академиками. Например, добровольцем ушел на фронт и участвовал в боях с фашистскими захватчиками в Крыму, на Украине, в Прибалтике и в Восточной Пруссии выдающийся математик и педагог Алексей Андреевич Ляпунов (1911 – 1973 гг.). Он храбро воевал и внес много ценного в правила стрельбы. Здесь он использовал свой опыт математика, которому свойственно искать самые лучшие решения. Его предложения увеличили эффективность стрельбы. За работы в области кибернетики, теории множеств и программирования А.А. Ляпунов уже после войны (с 1964 г.) был избран член — корреспондентом АН СССР. В частях тяжелой артиллерии на Пулковских высотах отстаивал город Ленинград выдающийся специалист в области теории чисел, теории вероятностей и математической статистики, доктор физико – математических наук, а потом академик АН СССР Юрий Владимирович Линник (1915 – 1972 гг.).
А во-вторых, каждый из университетов потерял многих молодых ученых, уже сумевших проявить себя и обещавших в будущем очень многое, но не вернувшихся с войны. Осенью 1941г. умер от ран и ужасных условий вражеского плена Николай Борисович Веденисов (1905 -1941гг.). Свой путь в математике талантливый ученый начинал в области теории множеств и теории функций действительного переменного. Позже его научные интересы перешли в область теоретико–множественной топологии, где он получил ряд важных результатов. Война застала Веденисова преподавателем одной из военных академий. Несмотря на слабое здоровье, он принял твердое решение уйти в ополчение. В тяжелых боях под Ельней ученый был ранен и оказался в плену, где скоропостижно скончался.
Михаил Валерьянович Бебутов (1913 – 1942 гг.) начал свою научную работу еще в студенческие годы. Его научные интересы были связаны с качественной теорией дифференциальных уравнений. Первая публикация относится к 1938 году, а последняя опубликована посмертно в 1942году. И все же, несмотря на такой ограниченный промежуток научной деятельности, М. В. Бебутов получил в математике ряд важных результатов. Защищенная им в июне 1941г. диссертация была отмечена ученым советом как выдающаяся работа.
Не вернулись с войны и такие талантливые молодые математики Московского университета, как Г.М. Бавли, В.Н. Засухин, А.И. Герчиков, М.Е. Глезерман, И.Р. Лепехин, X.М. Мильштейн, С.С. Кудашев, С.Я. Карпов, А.Т. Павлов, М.И. Песин и многие, многие другие. Все они могли бы стать гордостью нашей науки, но война прервала и зачеркнула развитие успешно начатого ими научного пути. Сколько замыслов осталось не осуществленными, какие возможные открытия они унесли с собой. Справедливо говорят, что трудно даже представить, какой была бы сегодня математика, не понеси мы этих потерь.
Математические
задачи для фронта и тыла
Но не только, участвуя в боях, советские математики вносили свою лепту в Победу над фашизмом. Их главный вклад состоит в использовании тех специфических знаний и умений, которыми они обладали. Значение этого фактора особенно важно в наши дни, когда война стала, в первую очередь, соревнованием разума, изобретательности и точного расчета. Дело в том, что для военных действии привлекаются все достижения естествознания, а вместе с ними и математика во всех ее проявлениях. Создание атомного и ракетного оружия потребовало не только использования физических законов, но и обширных математических расчетов, создания новых математических моделей и даже новых ветвей математики. Без таких предварительных математических исследований не создается ни одна техническая система и, чем она сложнее, тем разнообразнее и шире ее математический аппарат. Для примера, крейсер представляет собой очень сложную техническую систему. Прежде чем его построить, надо выявить геометрические формы корпуса судна, чтобы при движении не создавалось дополнительное сопротивления и чтобы одновременно судно слушалось руля. Также необходимо обеспечить живучесть корабля, надежность его управления, рассчитать влияние расположения машин, орудий, торпедных аппаратов на устойчивость и пр. Но и этого мало — требуется обеспечить связь со всеми боевыми единицами корабля, то есть создать эффективную систему управления кораблем и его оружием. Здесь перечислена лишь ничтожная доля тех задач, которые должен решить математик, прежде чем корабль можно начать строить. Но серьезные задачи необходимо решать и в период его эксплуатации — штурманские расчеты, расчеты стрельб и т. д.
Совершенствование
военной техники
В период Великой Отечественной войны техника была разнообразной и сложной. Она требовала широкого использования математических расчетов для ее изготовления и эксплуатации. Увеличение скорости полета самолетов требовало не только повышения мощности двигателей, но выбора оптимального профиля фюзеляжа и крыльев, а также решения многих других вопросов. Достижение блестящих результатов в совершенствовании боевых самолетов позволило Александру Сергеевичу Яковлеву и Семену Алексеевичу Лавочкину создать грозные истребители, Сергею Владимировичу Илюшину – неуязвимые штурмовики, Андрею Николаевичу Туполеву, Николаю Николаевичу Поликарпову и Владимиру Михайловичу Петлякову – мощные бомбардировщики. Но, овладевая большими скоростями, авиаконструкторы столкнулись с неизвестным ранее явлениями в поведении самолета. В определенных режимах работы моторов в конструкциях самопроизвольно возникало возбуждение, причем с большой амплитудой, и это явление (флаттер) вело к разрушению самолета в воздухе. Опасности подстерегали скоростные машины и на земле. При взлете и посадке самолета колеса вдруг начинали вилять из стороны в сторону. Это явление, названное шимми, нередко вызывало катастрофы самолетов на аэродромах. Выдающийся советский математик Мстислав Всеволодович Келдыш и возглавляемый им коллектив ученых исследовали причины флаттера и шимми. Созданная учеными математическая теория этих опасных явлений позволила советской авиационной науке своевременно защитить конструкции скоростных самолетов от появления таких вибраций. Ученые дали рекомендации, которые требовалось учитывать при конструировании самолетов. В результате наша авиация во время войны не знала случаев разрушения самолетов по причине неточного расчета конструкций, тем самым были спасены жизни многих летчиков и боевые машин. Советские ученые опередили врага и в создании реактивной авиации. Первый испытательный полет нашего реактивного истребителя был произведен в мае 1942 г., немецкий реактивный «Мессершмитт» поднялся в воздух через месяц после этого.
Видная роль в деле обороны нашей страны принадлежит выдающемуся математику – академику Алексею Николаевичу Крылову, чьи труды по теории непотопляемости и качки корабля были использованы нашими Военно-Морскими силами. Он создал таблицу непотопляемости, по которой можно было рассчитать, как повлияет на корабль затопление тех или других отсеков, какие номера отсеков нужно затопить, чтобы ликвидировать крен и насколько это затопление может улучшить устойчивость корабля. Использование этих таблиц спасло жизнь многих людей, помогло сберечь огромные материальные ценности.
Теория
стрельбы
Традиционная область деятельности ученых нашей страны — исследование артиллерийских систем. Проблемы пристрелки, разработанные еще в XIX веке, в связи с появлением новых типов артиллерии потребовали в период Великой Отечественной войны дополнительных исследований и составления таблиц.
Стрельба с самолета по самолету и по наземным целям также привела к математическим задачам, которые нужно было срочно решить. Ими занимались как специалисты в области артиллерии, так и математики. Проблемы бомбометания привели к необходимости составления таблиц, позволяющих находить оптимальное время для сброса бомб на цель, а также область, которую накроет бомбовой удар. Такие таблицы были составлены еще до начала войны, но для самолетов, обладающих большими скоростями. Во время войны были созданы специальные полки ночных тихоходных бомбардировщиков, но для них не было таблиц бомбометания. На кафедре теории вероятностей МГУ были рассчитаны таблицы бомбометания с малых высот при малых скоростях самолета. Они оказали несомненную помощь нашим летчикам и летчицам.
В апреле 1942 г коллектив математиков под руководством основателя конструктивной теории функции действительного переменного и первого аксиоматика теории вероятностей академика Сергея Натановича Бернштейна разработал и вычислил таблицы для определения местонахождения судна по радиопеленгам. Таблицы ускоряли штурманские расчеты примерно в 10 раз.
В 1943 г были подготовлены штурманские таблицы, которые нашли широкое применение в боевых действиях дальней авиации, значительно повысили точность самолетовождения. Штаб авиации дальнего действия, дал высокую оценку работе математиков, отметив, что ни в одной стране мира не были известны таблицы, равные этим по простоте и оригинальности. В результате решения сложной математической задачи член – корреспондент АН СССР Николай Гурьевич Четаев определил наивыгоднейшую крутизну нарезки стволов орудия. Это обеспечивало максимальную кучность боя и непереворачиваемость снаряда при полете.
Один из крупнейших наших математиков, академик Андрей Николаевич Колмогоров, используя свои работы по теории вероятности, разработал теорию наивыгоднейшего рассеивания артиллерийских снарядов. Он нашел полное решение этой задачи и довел его до практического использования. Полученные им результаты помогли повысить меткость стрельбы и тем самым увеличить эффектность действия артиллерии, которую заслуженно называли богом войны.
Большое значение для решения практических задач, в том числе оборонных, имело развитие номографии – одного из разделов математики, изучающей теорию и способы построения одного из видов чертежей – номограмм, которые экономят время для вычислений, упрощают их. Номограммы специального бюро при НИИ математики МГУ под руководством Нила Александровича Глаголева применялись при обороне городов, использовались для оптимального размещения зенитных батарей вокруг Москвы, в Военно-Морском Флоте.
Вторая мировая война оказалась, прежде всего, войной танков, соревнования моторов, огня и брони, и от того, чья конструкторская мысль оказывалась точнее и глубже, зависел исход многих сражений. Советские математики многое сделали для восстановления и развития народного хозяйства. За годы войны наблюдался прогресс в теоретической математике. До сих пор нет сводного труда, который бы показал, как много математики дали фронту для победы, как их исследования помогали совершенствовать оружие, которое использовали солдаты. Нам нельзя забывать о том, что подвиг народа в Великой Отечественной войне не ограничивается только славными делами фронтовиков, что основы победы ковались и в тылу, где руками рабочих и их разумом, руками и разумом инженеров и ученых создавалась и совершенствовалась военная техника. Нельзя нам забывать и того, что по многим параметрам к концу войны наши танки, самолеты, артиллерийские орудия стали совершеннее тех, которые противопоставлял нам враг. Нельзя забывать, что в конце войны мы вынуждены были вплотную заняться созданием собственного атомного оружия, а для этого пришлось объединить интеллектуальные усилия физиков, химиков, технологов, математиков, металлургов и самостоятельно пройти тот путь, который уже был пройден США и их западными союзниками.
Математика в период Великой отечественной войны - это не просто сухие цифры, это история, человеческие судьбы. Ведь от точности расчетов зависели человеческие жизни.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.