Состояние газа в целом характеризуется тремя макроскопическими параметрами: давлением p, объемом V и температурой T. Найдем между ними связь, а затем посмотрим, для чего эта связь нужна Мы уже детально рассмотрели поведение идеального газа с точки зрения молекулярно-кинетической теории. Определили зависимость давления газа от концентрации его молекул и температуры. На основе этой зависимости можно получить уравнение, связывающее все три макроскопических параметра p, V и T, характеризующие состояние достаточно разреженного газа данной массы. Это уравнение называют уравнением состояния идеального газа.
Подставим в уравнение Пэ равно Эн Ка Т выражение для концентрации молекул газа. Учитывая формулу ЭН равно ЭН А умножить на отношение массы вещества к молярной массе, концентрация газа ЭН будет равна 1 деленное на объем Вэ умножить на массу вещества деленную на молярную массу и умножить на число Авогадро ЭН А.
После подстановки формулы (2) в выражение (1) получим произведение давления Пэ на объем равно отношению массы вещества к молярной массе умноженному на постоянную Больцмана на число Авогадро и на температуру.
Произведение постоянной Больцмана k и постоянной Авогадро NA называют универсальной (молярной) газовой постоянной и обозначают буквой R (эр): R=8,31Дж/(моль•К) (8,31 Джоуль деленное на моль умножить на Кельвин).
Подставляя в уравнение (3) вместо kNA (ка эн а) универсальную газовую постоянную R, получим уравнение состояния для идеального газа произвольной массы: произведение давления на объем равно отношению массы вещества к молярной массе умноженному на универсальную газовую постоянную и на температуру.
Единственная величина в этом уравнении, зависящая от рода газа, - это его молярная масса.
Из уравнения состояния вытекает связь между давлением, объемом и температурой идеального газа, который может находиться в двух любых состояниях.
Если индексом 1 обозначить параметры, относящиеся к первому состоянию, а индексом 2 - параметры, относящиеся ко второму состоянию, то согласно уравнению (4) для газа данной массы отношение произведения давления на объем к температуре будет равно отношению массы вещества к молярной массе умноженной на универсальную газовую постоянную.
Правые части этих уравнений одинаковы, следовательно, должны быть равны и их левые части: Пэ1 умножить на Вэ1 деленное на Тэ1 равно Пэ2 на Вэ2, деленному на Тэ2.
Уравнение состояния в форме (5) называется уравнением Клапейрона и представляет собой одну из форм записи уравнения состояния.
Уравнение состояния в форме (4) было впервые получено великим русским ученым Д. И. Менделеевым. Поэтому его называют уравнением Менделеева - Клапейрона.
33. Уравнение состояния идеального газа.ppt
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с
договором-офертой сайта. Вы можете
сообщить о нарушении.