Урок 43
СУММА УГЛОВ ТРЕУГОЛЬНИКА
Цели: доказать теорему о сумме углов треугольника, следствия из нее; ввести понятия остроугольного, прямоугольного и тупоугольного треугольников; рассмотреть задачи на применение доказанных утверждений.
Ход урока
I. Анализ результатов контрольной работы.
1. Проанализировать характерные ошибки, допущенные в контрольной работе.
2. Выполнить работу над ошибками.
II. Изучение нового материала.
1. Решить задачу по готовому чертежу на доске (см. рис.).
На рисунке ВD || АС. Найдите сумму углов треугольника АВС. |
2. Вслед за решением этой задачи перед учащимися ставится вопрос: случайно ли сумма углов данного треугольника АВС оказалась равной 180° или этим свойством обладает любой треугольник?
Поиск ответа естественно приводит к формированию теоремы о сумме углов треугольника.
3. Доказательство теоремы о сумме углов треугольника (рис. 124 учебника).
4. Устно решить задачи №№ 223 (а, б, г), 225, 226.
5. Перед введением классификации треугольников по углам (п. 31) учащимся задается вопрос: «Может ли треугольник иметь: а) два прямых угла; б) два тупых угла; в) один прямой и один тупой угол?».
Ответы должны быть обоснованы с помощью теоремы о сумме углов треугольника.
6. Записать в тетрадях вывод из этих ответов (следствие из теоремы о сумме углов треугольника): в любом треугольнике либо все три угла острые, либо два угла острые, а третий – тупой или прямой.
7. Ввести понятия остроугольного, тупоугольного и прямоугольного треугольников и обратить внимание учащихся на названия сторон прямоугольника, треугольника – гипотенуза и катет (рис. 126 учебника, модели треугольников).
III. Закрепление изученного материала.
1. Решить задачи №№ 227 (а) и 224 на доске и в тетрадях.
2. Решить задачу № 228 (а, в) на доске и в тетрадях.
Решение
1) Рассмотрим два случая:
а) угол при основании равен 40°, тогда второй угол при основании равнобедренного треугольника тоже равен 40°; значит, угол при вершине равен 180° – (40° + 40°) = 100°;
б) угол при вершине равен 40°, тогда углы при основании равны (180° – 40°) : 2 = 70°.
Ответ: 40°; 40° и 100° или 40°; 70°.
2) Опираемся на доказанное в задаче № 226 утверждение: углы при основании равнобедренного треугольника острые. Значит, угол при вершине равен 100°, а углы при основании равны (180° – 100°) : 2 = 40°.
Ответ: 100°; 40° и 40°.
3. Решить задачу № 229 на доске и в тетрадях.
IV. Итоги урока. Домашнее задание: изучить пункты 30–31; ответить на вопросы 1; 3; 4; 5 на с. 89; решить задачи №№ 223 (в), 228 (б), 230.
© ООО «Знанио»
С вами с 2009 года.