ВЗАИМНООБРАТНЫЕ ЧИСЛА
Урок 1
Цели: ввести понятие взаимно обратных чисел; повторить правило умножения дробей, сокращения дробей; развивать логическое мышление учащихся.
Ход урока
I. Анализ контрольной работы.
1. Сообщить результаты контрольной работы.
2. Выполнить на доске задания, вызвавшие затруднения у учащихся.
3. Устно решить № 582 и 586 (а; б).
II. Изучение нового материала.
1. Выполнить умножение чисел:
![]()
2. Определение взаимно обратных чисел.
при а ≠ 0 и в ≠ 0.
3. Найти число,
обратное числу 3![]()
Запишем число 3
в виде
неправильной дроби:
Значит, обратным
будет число ![]()
III. Закрепление изученного материала.
1. Решить № 577 (а; г; д) на доске и в тетрадях.
2. Решить № 578 (а; е) на доске и в тетрадях; № 578 (б; в; г) решить с комментированием на месте.
Решение.
![]()
3. Решить уравнения № 564 (а; б).
Решение.

4. Повторение ранее изученного материала:
а) решить № 583;
б) самостоятельно решить № 590 (1);
в) решить на доске и в тетрадях № 589.
Решение.
Вспомнить правило нахождения среднего арифметического чисел.
Пусть первое число равно х, тогда второе число (х + 0,9), а третье число 2х. Составим и решим уравнение:
(х + х + 0,9 + 2х) : 3 = 3,1
4х + 0,9 = 3,1 · 3
4х + 0,9 = 9,3
4х = 9,3 – 0,9
4х = 8,4
х = 8,4 : 4 = 2,1.
Первое число равно 2,1; второе число 2,1 + 0,9 = 3; третье число 2,1 · 2 = 4,2.
Ответ: 2,1; 3; 4,2.
IV. Итог урока.
1. Ответить на вопросы:
а) Какие числа называют взаимно обратными?
б) Как записать
число, обратное дроби ![]()
в) Как записать число, обратное натуральному числу?
г) Как записать число, обратное смешанному числу?
2. Привести свои примеры.
Домашнее задание: п. 16, решить № 591 (а); № 592 (а; в), № 595 (а).
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.