ЗАДАНИЯ №11 ПРОФИЛЬНОГО ЕГЭ ПО МАТЕМАТИКЕ
ЗАДАЧИ НА ПРОЦЕНТЫ
1 |
В 2008 году в городском квартале проживало 40000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 1%, а в 2010 году — на 9% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году? |
2 |
В понедельник акции компании подорожали на некоторое количество процентов, а во вторник подешевели на то же самое количество процентов. В результате они стали стоить на 1% дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник? |
3 |
Три одинаковые рубашки дешевле куртки на 10 %. На сколько процентов четыре такие же рубашки дороже куртки? |
4 |
Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 58%. Если бы стипендия дочери уменьшилась вчетверо, общий доход семьи сократился бы на 6%. Сколько процентов от общего дохода семьи составляет зарплата жены? |
5 |
Цена холодильника в магазине ежегодно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый год уменьшалась цена холодильника, если, выставленный на продажу за 19 800 рублей, через два года был продан за 16 038 рублей. |
6 |
Митя, Антон, Паша и Гоша учредили компанию с уставным капиталом 100 000 рублей. Митя внес 24% уставного капитала, Антон — 55000 рублей, Паша — 0,18 уставного капитала, а оставшуюся часть капитала внес Гоша. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 600 000 рублей причитается Гоше? Ответ дайте в рублях. |
7 |
В сосуд, содержащий 8 кг 11-процентного водного раствора некоторого вещества, добавили 3 кг воды. Сколько процентов составляет концентрация получившегося раствора? |
8 |
Смешали некоторое количество 13-процентного раствора некоторого вещества с таким же количеством 17-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора? |
9 |
Смешали 4 литра 15–процентного водного раствора некоторого вещества с 6 литрами 25–процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора? |
10 |
Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 82 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды? |
11 |
Имеется два сплава. Первый содержит 15% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 140 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго? |
12 |
Имеется два сплава. Первый сплав содержит 5% меди, второй — 12% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 10% меди. Найдите массу третьего сплава. Ответ дайте в килограммах. |
13 |
Смешав 11-процентный и 72-процентный растворы кислоты и добавив 10 кг чистой воды, получили 31-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 51-процентный раствор кислоты. Сколько килограммов 11-процентного раствора использовали для получения смеси? |
14 |
Имеются два сосуда. Первый содержит 30 кг, а второй — 15 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 34% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 46% кислоты. Сколько килограммов кислоты содержится в первом сосуде? |
15 |
Клиент А. сделал вклад в банке в размере 2500 рублей. Проценты по вкладу начисляются раз в год и прибавляются к текущей сумме вклада. Ровно через год на тех же условиях такой же вклад в том же банке сделал клиент Б. Ещё ровно через год клиенты А. и Б. закрыли вклады и забрали все накопившиеся деньги. При этом клиент А. получил на 216 рублей больше клиента Б. Какой процент годовых начислял банк по этим вкладам? |
© ООО «Знанио»
С вами с 2009 года.