Didactic material #1
|
Elastic collision |
Inelastic collision |
Explosion |
Description
|
|
|
|
Simple diagram for different situations
|
|
|
|
Equation of momentum before and after the collision or explosion
|
1 )
2)
|
1
2) |
|
Which physical quantities are conserved? Explain. Momentum Kinetic energy
|
|
|
|
Didactic material #2
Q1. For the two
physical quantities, impulse and force, which one of the following is correct?
A Impulse is a scalar and force is a scalar.
B Impulse is a scalar and force is a vector.
C Impulse is a vector and force is a scalar.
D impulse is a vector and force is a vector.
(Total 1 mark)
Q2.
A force, F, varies with time, t, as shown by the graph and is applied to a body initially at rest on a smooth surface. Whatisthemomentumofthebodyafter 5.0 s?
A zero.
B 12.5 N s.
C 25 N s.
D 50 N s.
(Total 1 mark)
Q3. A particle of mass m strikes a rigid wall perpendicularly from the left with velocity v.
If the collision is perfectly elastic, the change in momentum of the particle which occurs as a result of the collision is
A 2mvtotheright.
B 2mvtotheleft.
C mvtotheleft.
D zero.
(Total 1 mark)
Q4. The graph shows
how the force acting on a body changes with time.
The body has a mass of 0.25 kg and is initially at rest. What is the speed of the body after 40 s assuming no other forces are acting?
A 200 ms–1
B 400 ms–1
C 800 ms–1
D 1600 ms–1
(Total 1 mark)
Q5. The graph shows how the
resultant force applied to an object of mass 2.0 kg, initially at rest,varies
with time.
What is the speed of the object after 1.0 s?
A 2.5 ms–1
B 5.0 ms–1
C 7.5 ms–1
D 10 ms–1
(Total 1 mark)
Q6. A rail truck X travels along a level track and collides with a stationary truck Y. The twotrucks move together at the same velocity after the collision.
Which line, A to D, in the table states how the total momentum and the total kinetic energy of the trucks change as a result of the impact.
|
totalmomentum |
|
totalkineticenergy |
|
|
|
|
A |
unchanged |
|
unchanged |
|
|
|
|
B |
unchanged |
|
decreases |
|
|
|
|
C |
decreases |
|
decreases |
|
|
|
|
D |
decreases |
|
unchanged |
|
|
|
|
(Total 1 mark)
Q7. A golf club undergoes aninelasticcollision with a stationary golf ball and gives it an initialvelocity of 60 m s–1. The ball is in contact with the club for 15 ms and the mass of the ball is 4.5 × 10–2 kg.
(a) Explain what is meant by an inelastic collision.
......................................................................................................................
......................................................................................................................
(1)
(b) Calculate
(i) the change in momentum of the ball,
.............................................................................................................
.............................................................................................................
(ii) the average force the club exerts on the ball.
.............................................................................................................
.............................................................................................................
.............................................................................................................
(4) (Total 5 marks)
Q8. In a football match, a player kicks a stationary football of mass 0.44 kg and gives it a speedof 32 m s–1.
(a) (i) Calculate the change of momentum of the football.
.............................................................................................................
(ii) The contact time between the football and the footballer’s boot was 9.2 m s. Calculate the average force of impact on the football.
.............................................................................................................
.............................................................................................................(3)
(b) A video recording showed that the toe of the boot was moving on a circular arc of radius 0.62 m centred on the knee joint when the football was struck. The force of the impact slowed the boot down from a speed of 24 m s–1 to a speed of 15 m s–1.
Figure 1
(i) Calculate the deceleration of the boot along the line of the impact force when it struck the football.
.............................................................................................................
.............................................................................................................
.............................................................................................................
(ii) Calculate the centripetal acceleration of the boot just before impact.
.............................................................................................................
.............................................................................................................
.............................................................................................................
(iii) Discuss briefly the radial force on the knee joint before impact and during the impact.
.............................................................................................................
.............................................................................................................
.............................................................................................................
...........................................................................................................
.............................................................................................................
.............................................................................................................
.............................................................................................................
.............................................................................................................
(4) (Total 7 marks)
Q9. A car travelling at 30 m s–1 collides with a wall. The driver, wearing a seatbelt, is brought to rest in 0.070 s.
The driver has a mass of 50kg. Calculate the momentum of the driver before the crash.
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
Momentum = .........................................................
(2)
Calculate the average resultant force exerted on the driver during impact.
..............................................................................................................................................
..............................................................................................................................................
..............................................................................................................................................
Average resultant force = .......................................
(3)
Explain why the resultant force is not the same as the force exerted on the driver by the seatbelt.
..............................................................................................................................................
..............................................................................................................................................
Скачано с www.znanio.ru
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.