Арифметические и логические основы работы компьютера
Логика, как наука развивается с IV в. до н. э. начиная с трудов Аристотеля. Именно он подверг анализу человеческое мышление, такие его формы, как понятие, суждение, умозаключение.
Логика – (от греч. “логос”, означающего “слово” и “смысл”) – наука о законах, формах и операциях правильного мышления. Ее основная задача заключается в нахождении и систематизации правильных способов рассуждения.
Рис. 1. Основные формы абстрактного мышления
Понятие – это форма мышления, в которой отражаются существенные признаки отдельного предмета или класса однородных предметов. Всякое понятие имеет содержание и объем. Например, понятие “Черное море” – отражает единичный предмет, “Сиамская кошка” – отражает класс сиамских кошек.
Высказывание (суждение) – некоторое предложение, которое может быть истинно (верно) или ложно. Например, Абакан – столица Хакасии. Утверждение – суждение, которое требуется доказать или опровергнуть. Рассуждение – цепочка высказываний или утверждений, определенным образом связанных друг с другом.
Умозаключение – логическая операция, в результате которой из одного или нескольких данных суждений получается (выводится) новое суждение. Умозаключения бывают: Дедуктивные (от общего к частному) – Все ученики ходят в школу. Вася – ученик. Вася ходит в школу. Индуктивные (от частного к общему) – Банан и персик – сладкие. Значит, все фрукты сладкие на вкус. Аналогия – Наши коровы едят траву и дают молоко. В Австралии есть поля, коровы едят эту траву. Следовательно, австралийские коровы тоже дают молоко.
В алгебре логики высказывания обозначаются именами логических переменных (А, В, С). Истина, ложь – логические константы.
Логическое выражение – запись или устное утверждение, в которое, наряду с постоянными, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных логическое выражение может принимать одно из двух возможных значений: ИСТИНА (логическая 1) или ЛОЖЬ (логический 0).
Сложное логическое выражение – логическое выражение, составленное из одного или нескольких простых (или сложных) логических выражений, связанных с помощью логических операций.
Логические операции и таблицы истинности
1) Логическое умножение или конъюнкция:
Конъюнкция - это сложное
логическое выражение, которое считается истинным в том и только том случае,
когда оба простых выражения являются истинными, во всех остальных случаях
данное сложеное выражение ложно.
Обозначение: F = A & B.
Таблица истинности для конъюнкции
A |
B |
F |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
2) Логическое сложение или дизъюнкция:
Дизъюнкция - это сложное
логическое выражение, которое истинно, если хотя бы одно из простых логических
выражений истинно и ложно тогда и только тогда, когда оба простых логических
выраженныя ложны.
Обозначение: F = A + B.
Таблица истинности для дизъюнкции
A |
B |
F |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
3) Логическое отрицание или инверсия:
Инверсия - это сложное логическое выражение, если исходное логическое выражение истинно, то результат отрицания будет ложным, и наоборот, если исходное логическое выражение ложно, то результат отрицания будет истинным. Другими простыми слова, данная операция означает, что к исходному логическому выражению добавляется частица НЕ или слова НЕВЕРНО, ЧТО.
Таблица истинности для инверсии
A |
неА |
1 |
0 |
0 |
1 |
4) Логическое следование или импликация:
Импликация - это сложное логическое выражение, которое истинно во всех случаях, кроме как из истины следует ложь. Тоесть данная логическая операция связывает два простых логических выражения, из которых первое является условием (А), а второе (В) является следствием.
Таблица истинности для импликации
A |
B |
F |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
5) Логическая равнозначность или эквивалентность:
Эквивалентность - это сложное логическое выражение, которое является истинным тогда и только тогда, когда оба простых логических выражения имеют одинаковую истинность.
Таблица истинности для эквивалентности
A |
B |
F |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1. Инверсия;
2. Конъюнкция;
3. Дизъюнкция;
4. Импликация;
5. Эквивалентность.
Для изменения указанного порядка выполнения логических операций используются скобки.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.