Арифметический корень натуральной степени

  • docx
  • 10.12.2025
Публикация на сайте для учителей

Публикация педагогических разработок

Бесплатное участие. Свидетельство автора сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала арифметич корень.docx

Филиал бюджетного профессионального образовательного учреждения Чувашской Республики

 «Чебоксарский медицинский колледж»

Министерства здравоохранения Чувашской Республики в городе Канаш

 

 

 

 

РАССМОТРЕНО и ОДОБРЕНО

на заседании

ЦМК ОГСЭ

Протокол № ____

«____» _______________ 20 ___ г.

Председатель ЦМК

____________Л.М Иванова

                        утверждено

Зав. филиалом БПОУ «ЧМК»

МЗ Чувашии в г. Канаш

____________ Т.Э Фадеева

 

 

 

 

 

Методическая разработка теоретического занятия

 

Арифметический корень

натуральной степени.

учебная дисциплина БД. 04 Математика

специальность 34.02.01Сестринское дело

 (базовая  подготовка)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Канаш, 2021

 

 

Составитель: Семенова А.М., преподаватель  высшей квалификационной категории филиала БПОУ ЧР «Чебоксарский медицинский колледж» Министерства здравоохранения Чувашии в г. Канаш

 

 

Рецензент: Иванова Л.М., преподаватель, высшей квалификационной категории филиала БПОУ ЧР «Чебоксарский медицинский колледж» Министерства здравоохранения Чувашии в г. Канаш

 

 

 

 

Аннотация

 

      Данная методическая разработка  по теме «Арифметический корень натуральной степени» является уроком изучения нового материала. Урок построен так, чтобы обучающиеся, опираясь на ранее полученные знания, могли вывести формулы сами. Материал урока направлен на     изучение   арифметического корня  натуральной степени.;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СОДЕРЖАНИЕ

 

ВВЕДЕНИЕ. 3

1. методический блок. 4

1.1. Учебно-методическая карта. 4

Формы деятельности. 4

1.2. Технологическая карта. 8

2. Информационный блок. 10

2.1. План лекции. 10

2.2 Текст лекции. 11

2.3. Глоссарий. 18

3. Контролирующий блок

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

ВВЕДЕНИЕ

 

      Данная методическая разработка по теме «Арифметический корень натуральной степени» является уроком изучения нового материала. Материал урока направлен на развитие логического мышления, алгоритмической культуры, интуиции, навыков исследовательской деятельности, творческих способностей обучающихся. Структура урока: постановка цели и задач урока; повторение умений и навыков, являющихся опорой для восприятия новой темы; проведение проверочных упражнений (устная работа); рассмотрение арифметического  корня натуральной степени. Упражнения на закрепление данного алгоритма;  тренировочные упражнения по образу и подобию в виде самостоятельной работы; самоконтроль обучающихся.
          Создание проблемных ситуаций на уроках математики повышает интерес к предмету, вносит разнообразие и эмоциональную окраску в учебную работу, снимает утомление, развивает внимание, сообразительность.

 


1. МЕТОДИЧЕСКИЙ БЛОК

1.1. Учебно-методическая карта

 

Тема занятия

 Арифметический корень натуральной степени.

Учебная дисциплина

БД.04 Математика

Специальность

34.02.01 Сестринское дело (базовая подготовка)

Курс

I

Группа

9М-11-20, 9М-12-20,  9М-13-20,9М-14-20, 9М-15-20.

Место проведения

Кабинет № 5

Продолжительность занятия

90 мин.

Характеристика занятия

Вид

Вид занятия 

 Лекция текущая, обзорная.

 

Тип

Типы учебных занятий

урок изучения нового материала;

комбинированный урок

 

Форма

Изложение, рассказ, объяснение с демонстрацией наглядных пособий.

Формы деятельности

Фронтальная.                     

 

Технологии обучения

Традиционная технология обучения

Технология развивающего обучения

 

Методы обучения

Метод  

Репродуктивный: упражнения, действия по алгоритму.

Интерактивные методы – практическая отработка осваиваемых знаний, умений, навыков на уровне компетенций

 

Средства обучения

1.По характеру воздействия на обучаемых:  

ИКТ - презентации;  

2.По степени сложности:  

простые: учебники, печатные пособия.  

 

Методическая цель

Методическая цель

- отрабатывать методику контроля результатов выполнения письменных упражнений.

- реализовывать индивидуальный дифференцированный подход в процессе выполнения обучающимися заданий для самостоятельной работы;

Цели и задачи занятия

Воспитательная

Формулировать  интеллектуальных, нравственных, эмоционально-волевых качеств у обучающихся.

 

Воспитывать положительное отношение к приобретению новых знаний;

Воспитывать ответственность за свои действия и поступки;

Вызвать заинтересованность новым для студентов подходом изучения математики.

Воспитывать интерес к математике путём введения разных видов закрепления материала: устной работой, работой с учебником, работой у доски, ответами на вопросы и умением делать самоанализ, самостоятельной работой; стимулированием и поощрением деятельности учащихся.

 

 

Образовательная

Знать: арифметический корень натуральной степени.

Уметь решать  задачи с помощью  алгоритмов и методов;

Уметь логически и полно выстраивать ответ.

Систематизировать знания о арифметическом корне натуральной степени.

 

Ввести понятие арифметического корня натуральных чисел.

Повторить, что такое натуральное, целое, рациональное число; вспомнить свойства арифметического корня натуральной степени, обобщить правила работы со степенями.

Сформировать умение вычислять арифметические корни натуральной степени, корни нечетной степени; пользоваться свойствами арифметического корня.

Развивающая

Развитие речи, мышления, сенсорной восприятие внешнего мира через органы чувств сферы;

 

Формировать навыки познавательного мышления.

Продолжить развитие умения выделять  главное.

Продолжить развитие умения устанавливать причинно-следственные связи.

Развивать навыки и умения, в выполнении заданий по теме, умение работать в группе и самостоятельно. Развивать логическое мышление, правильную и грамотную математическую речь, развитие самостоятельности и уверенности в своих знаниях и умениях при выполнении разных видов работ.
развивать познавательный интерес.

Планируемый результат

Уметь

Решать  задачи с помощью  алгоритмов и методов.

 Логически и полно выстраивать ответ.

  Извлекать корня  натуральной степени. Использовать свойства корня натуральной степени при решении задач.

Знать

Определение арифметического корня натуральной степени и корня нечетной степени, свойства арифметических корней.

Множество натуральных и  целых чисел. Множество рациональных чисел.

Формирование компетенций у обучающихся

Общие (ОК)

 

Л1. Сформированность представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, идеях и методах математики;

Л5. Готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

Л8. Отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;

М2. Умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;

М5. Владение языковыми средствами: умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;

 

Профессиональные (ПК)

 П1. Сформированность представлений о математике как части мировой культуры и месте математики в современной цивилизации, способах описания явлений реального мира на математическом языке;

П3. Владение методами доказательств и алгоритмов решения, умение их применять, проводить доказательные рассуждения в ходе решения задач;

П4. Владение стандартными приемами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств;

Межпредметные связи

Входящие

История

Целые числа

Литература

Арифметический  корень натуральной степени.

 

 

Выходящие

Геометрия

Действительные числа.

 

 

 

 

Внутрипредметные

Алгебра, геометрия

Действительные числа

Оснащение занятия

Методическое

Методическая разработка занятия.

Материально-техническое

Ручка, карандаш, тетрадь, линейка.

Информационное

Компьютер, интерактивная доска.

Список литературы

Основная

1.Алимов, Ш. А. Алгебра и начала математического анализа (базовый и углубленный уровни)10—11 классы / Ш.А. Алимов — М., 2018. – с.455.

2.Колягин, Ю.М. Математика: алгебра и начала математического анализа. Алгебра и начала математического анализа (базовый и углубленный уровни). 11 класс / М. В Ткачева., Н. Е Федерова. — М., 2018. - 384 с.

Дополнительная

1 Александров А.Д., Геометрия / А.Л.Вернер, В.И. Рыжик (базовый и профильный уровни). 10—11 кл.  – 2017. – 344 с. 

2. Богомолов, И.Д. Математика: учебник / И.Д. Богомолов.  – М., 2018. -  384 с.

 

Интернет-ресурсы

1. Калашникова В.А. Методическое пособие: «Конспекты лекций по математике» [Электронный ресурс] /В.А. Калашникова.

2. Яковлев Г.Н. Алгебра и начала анализа (Математика для техникумов) [Электронный учебник] /Г.Н Яковлев. - Режим доступа: http://lib.mexmat.ru/books/78472.

3.www. fcior. edu. ru             

4.www. school-collection. edu.

 

 


 

1.2. Технологическая карта

 

Деятельность преподавателя

Деятельность обучающихся

Методическое обоснование

Формируемые

ОК и ПК

1. Организационный этап  -5 мин.

Проверяет готовность обучающихся к занятию.

дает положительный эмоциональный настрой, организует, проверяет готовность уч-ся к уроку

Готовятся к началу занятия.

Включение обучающихся в деятельность на личностно значимом уровне.

ОК 1, ОК 4.

П1.

2. Этап всесторонней проверки домашнего задания  - 10мин.

Выявляет  правильность и осознанность выполнения всеми обучающимися домашнего задания; устранить в ходе проверки обнаруженные пробелы в знаниях.

По очереди комментируют свои решения.

Приводят примеры.

Пишут под диктовку.

 

Повторение изученного материала, необходимого для открытия нового знания, и выявление затруднений в индивидуальной деятельности каждого обучающегося.

ОК1,

ПК 1,

ПК4

3. Постановка цели и задач занятия. Мотивация учебной деятельности обучающихся  - 5 мин.

Озвучивает тему урока и цель, уточняет понимание обучающегося  поставленных целей урока. Эмоциональный настрой и готовность преподавателя  на урок.

 

Эмоционально настраиваются  и готовятся   обучающихся на урок.

 Ставят цели, формулируют тему урока.

 Обсуждение затруднений; проговаривание цели урока в виде вопроса, на который предстоит ответить. Методы, приемы, средства обучения: побуждающий от проблемы диалог, подводящий к теме диалог.

ОК 1, ОК 4.

П1.

4. Актуализация знаний  - 30 мин.

Уточняет понимание обучающимися поставленных целей занятия.

Выдвигает проблему. Создает условия, чтобы обучающийся смогли систематизировать знания о множестве действительных чисел, имели представление о пределе числовой последовательности

 

 Под диктовку, все выполняют задание, а один проговаривает вслух.

 

Создание проблемной ситуации. Уч-ся- фиксируют индивидуальные затруднения . Создание условия, чтобы обучающийся смогли систематизировать знания о множестве действительных чисел.

ОК 1, ОК 4.

П1.

5. Первичное усвоение новых знаний -  10  мин.

Создаёт эмоциональный настрой на усвоение новых знаний.

 

Внимательно слушают, записывают под диктовку в тетрадь.

Создание условий, чтобы обучающийся смогли систематизировать знания о множестве действительных чисел.

ОК1,

ПК 1,

ПК4

6. Первичная проверка понимания  - 10 мин.

Проводит параллель с ранее изученным материалом. Проводит беседу  по уточнению и конкретизации первичных знаний;

 

Отвечают на заданные вопросы преподавателем.

Осознание  степени овладения полученными знаниями - каждый для себя должен сделать вывод о том, что он уже умеет.

ОК1,

ПК 1,

ПК4

7.  Первичное закрепление  -  5 мин.

Контролирует выполнение работы.

Осуществляет: индивидуальный контроль; выборочный контроль.

Побуждает к высказыванию своего мнения. Показывает на доске решение, опираясь на алгоритм.

записывают решение, остальные решают на местах, потом проверяют друг друга;

 

Тренировка и активизация употребления новых знаний, включение нового в систему Режим работы: устная, письменная, фронтальная, индивидуальная.

ОК1,

ПК 1,

ПК4

8. Контроль усвоения, обсуждение допущенных ошибок и их коррекция (подведение итогов занятия  5 мин

Отмечает       степень             вовлеченности             обучающихся в работу на занятии. Задает вопросы по обобщению материала.

Под диктовку, все выполняют задание, а один проговаривает вслух;

Оценивание  работу  обучающихся, делая акцент на тех, кто умело взаимодействовал при выполнении заданий

ОК 1, ОК 4.

П1.

9. Информация о домашнем задании, инструктаж по его выполнению 5 мин

Обсуждение способов решения домашнего задания. Записывает номера заданий на доске.

 

Обобщают полученные знания, делают вывод о выполнении задач урока.

Информация о домашнем задании, инструктаж по его выполнению

 

ОК 1, ОК 4.

П1.

10. Рефлексия (подведение итогов занятия) , 5 мин

Акцентирует внимание на конечных результатах учебной деятельности обучающихся на занятии.

 

1.      Проводят  самоанализ: “Чему научились и что нового узнали?”

 

Осознание своей учебной деятельности; самооценка результатов деятельности своей.

ОК1,

ПК 1,

ПК4


 

2. Информационный блок

2.1. План лекции

 

№ п/п

Изучаемые вопросы

Уровень усвоения

1.

Устная работа. Повторение. Проверка домашнего задания.

1

2.

 Объяснение темы Арифметический корень натуральной степени.

 

 

   2. 1.Основные определения.

2

 

   2.2.Свойства корня натуральной степени из числа.

2

3.

Закрепление нового материала.

 

 

     3.1 Вычисление корней натуральной степени

3

 

     3.2 Решение примеров.

3

4

Решение упражнений (нечетные пункты) на закрепление темы (№28-32)

3

5.

Домашнее задание № 28-32 (четные пункты).

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.      Устная работа. Повторение. Проверка домашнего задания.

Вопросы для повторения:

1. Что такое натуральное, целое, рациональное число, иррациональное число действительные числа, периодическая дробь;

2. Вспомнить правила записи бесконечной десятичной дроби в виде обыкновенной,

3.Повторить особенности бесконечно убывающей геометрической прогрессии, обобщить правила работы со степенями.

2.2 Текст лекции

 2. Объяснение темы: Арифметический корень натуральной степени. 

 

Определение. Арифметическим корнем натуральной степени  из неотрицательного числа  называется неотрицательное число, -я степень которого равна .

Обозначение: , где  – подкоренное выражение. Если , то пишут .

Чтобы, используя определение, доказать, что корень -й степени  равен , нужно показать, что: .

Определение. Действие, посредством которого отыскивается корень -й степени, называется извлечением корня -ой степени.

Определение. Для любого нечетного натурального числа  уравнение  при  имеет только один корень, причем отрицательный. Этот корень обозначается, как и арифметический корень, символом . Его называют корнем нечетной степени из отрицательного числа.

Свойства арифметических корней

Арифметический корень -й степени обладает следующими свойствами: если ,   и  –  натуральные числа, причем , то

1.

2.

3. ,

4.

5.

6. .

4. Решение ключевых задач.

Пример 1.  , так как  и .

Пример 2. ,

Пример 3. Вычислить                                                                             1.

 

;                                                                                                   

Решение. Используя свойства арифметического корня натуральной степени, получаем: .

5. Решение упражнений.

1. Вычислить

 

1. ;

2. ;

3. 

4. ;

5. ;

6. ;

7. .

 

2.      Найти значение выражений:

 

1) ;                2) .

Решение.

1) В данном выражении первым действием является извлечение квадратного корня из числа. Вторым действием  - сложение полученных результатов. При вычислении используем 1-ое свойство корней:

.

2) Аналогично предыдущему примеру, первым действием является извлечение квадратного корня из числа. Вторым и третьим действиями  - умножение и разность полученных результатов. При вычислении используем 1-ое свойство корней:

.

3. Вычислить.

Решение.

;

 

1.      Для любого а справедливо равенство:

Пример:

Найдите значение выражения , при 3 <x< 6.

Степени заданных арифметических корней 4 и 2, четные числа, следовательно, мы можем применить свойство №5:

=|x – 3| = х – 3, т.к. х>3;

=|x – 6|=6 – x, т.к. х<6.

Получаем: х – 3 + 6 – х= 3.

 

                                                                                                                 

6. Подведение итогов урока. Выставление оценок. Домашнее задание: выучить теоретический материал, задание 1 (нечетные).

                                                                                                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

2.3. Глоссарий

 

Термин

Значение

 1.Арифметический корень натуральной степени.

 Квадратный корень

 

 

Кубический корень из а

из неотрицательного числа  называется неотрицательное число, -я степень которого равна .

 

из числа a называют такое число, квадрат которого будет равен a.

 

это такое число, которое при возведении в третью степень дает число а.

 

 

 


 

3. Контролирующий блок

Задание 1. Вычислить

 

 

1);                                                                                       2) ;      

3) ;                                                                                  4)  ;

5)                                                                                             6) ;                  

7) ;                                                                                             8) ;

9) ;                                                                                           10) ;

11)   ;                                                                                  12)


 

Скачано с www.znanio.ru

Посмотрите также