bernoulli's equation

  • pptx
  • 03.05.2020
Публикация на сайте для учителей

Публикация педагогических разработок

Бесплатное участие. Свидетельство автора сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала bernoulli's equation.pptx

Deriving of Bernoulli’s Equation

Consider a tube with a varying cross sectional and different heights at both ends.

Show liquid flow

Volume in

Volume out

1

2

𝐴 1 𝐴𝐴 𝐴 1 1 𝐴 1

𝐴 2 𝐴𝐴 𝐴 2 2 𝐴 2

ℎ 1 ℎ ℎ 1 1 ℎ 1

ℎ 2 ℎ ℎ 2 2 ℎ 2

The amount of water coming in must be equal to the amount of water coming out per time.

Work needs to be done to move the liquid from point 1 to point 2.

𝐿 1 𝐿𝐿 𝐿 1 1 𝐿 1

𝐿 2 𝐿𝐿 𝐿 2 2 𝐿 2

Total work done is equal to the total change of energy.

Volume in

Volume out

1

2

𝐴 1 𝐴𝐴 𝐴 1 1 𝐴 1

𝐴 2 𝐴𝐴 𝐴 2 2 𝐴 2

ℎ 1 ℎ ℎ 1 1 ℎ 1

ℎ 2 ℎ ℎ 2 2 ℎ 2

𝐿 1 𝐿𝐿 𝐿 1 1 𝐿 1

𝐿 2 𝐿𝐿 𝐿 2 2 𝐿 2

∆𝑊𝑊=∆ 𝑃𝐸 𝑔 𝑃𝑃𝐸𝐸 𝑃𝐸 𝑔 𝑔𝑔 𝑃𝐸 𝑔 +∆𝐾𝐾𝐸𝐸

𝑊 2 − 𝑊 1 = 𝑃𝐸 𝑔2 − 𝑃𝐸 𝑔1 + 𝐾𝐸 2 − 𝐾𝐸 1

𝑊=𝐹𝑑

𝐹=𝑃𝐴

𝑑=𝐿

𝑊=𝑃𝐴𝐿=𝑃𝑉

𝑃𝐸 𝑔 =𝑚𝑔ℎ

𝐾𝐸= 1 2 𝑚 𝑣 2

Volume in

Volume out

1

2

𝐴 1 𝐴𝐴 𝐴 1 1 𝐴 1

𝐴 2 𝐴𝐴 𝐴 2 2 𝐴 2

ℎ 1 ℎ ℎ 1 1 ℎ 1

ℎ 2 ℎ ℎ 2 2 ℎ 2

𝐿 1 𝐿𝐿 𝐿 1 1 𝐿 1

𝐿 2 𝐿𝐿 𝐿 2 2 𝐿 2

∆𝑊𝑊=∆ 𝑃𝐸 𝑔 𝑃𝑃𝐸𝐸 𝑃𝐸 𝑔 𝑔𝑔 𝑃𝐸 𝑔 +∆𝐾𝐾𝐸𝐸

𝑊 2 − 𝑊 1 = 𝑃𝐸 𝑔2 − 𝑃𝐸 𝑔1 + 𝐾𝐸 2 − 𝐾𝐸 1

𝑃 2 𝑃𝑃 𝑃 2 2 𝑃 2 𝑉𝑉− 𝑃 1 𝑃𝑃 𝑃 1 1 𝑃 1 𝑉𝑉= 𝑚𝑔 ℎ 2 − 𝑚𝑔ℎ 1 𝑚𝑚𝑔𝑔 ℎ 2 ℎ ℎ 2 2 ℎ 2 − 𝑚𝑔ℎ 1 𝑚𝑚𝑔𝑔ℎ 𝑚𝑔ℎ 1 1 𝑚𝑔ℎ 1 𝑚𝑔 ℎ 2 − 𝑚𝑔ℎ 1 + 1 2 𝑚 𝑣 2 2 − 1 2 𝑚 𝑣 1 2 1 2 1 1 2 2 1 2 𝑚𝑚 𝑣 2 2 𝑣 2 𝑣𝑣 𝑣 2 2 𝑣 2 𝑣 2 2 2 𝑣 2 2 − 1 2 1 1 2 2 1 2 𝑚𝑚 𝑣 1 2 𝑣 1 𝑣𝑣 𝑣 1 1 𝑣 1 𝑣 1 2 2 𝑣 1 2 1 2 𝑚 𝑣 2 2 − 1 2 𝑚 𝑣 1 2

𝑃 1 𝑃𝑃 𝑃 1 1 𝑃 1 𝑉𝑉+ 𝑚𝑔ℎ 1 𝑚𝑚𝑔𝑔ℎ 𝑚𝑔ℎ 1 1 𝑚𝑔ℎ 1 + 1 2 1 1 2 2 1 2 𝑚𝑚 𝑣 1 2 𝑣 1 𝑣𝑣 𝑣 1 1 𝑣 1 𝑣 1 2 2 𝑣 1 2 = 𝑃 2 𝑃𝑃 𝑃 2 2 𝑃 2 𝑉𝑉+𝑚𝑚𝑔𝑔 ℎ 2 ℎ ℎ 2 2 ℎ 2 + 1 2 1 1 2 2 1 2 𝑚𝑚 𝑣 2 2 𝑣 2 𝑣𝑣 𝑣 2 2 𝑣 2 𝑣 2 2 2 𝑣 2 2

𝑃 1 𝑃𝑃 𝑃 1 1 𝑃 1 + 𝑚 𝑉 𝑚𝑚 𝑚 𝑉 𝑉𝑉 𝑚 𝑉 𝑔ℎ 1 𝑔𝑔ℎ 𝑔ℎ 1 1 𝑔ℎ 1 + 1 2 1 1 2 2 1 2 𝑚 𝑉 𝑚𝑚 𝑚 𝑉 𝑉𝑉 𝑚 𝑉 𝑣 1 2 𝑣 1 𝑣𝑣 𝑣 1 1 𝑣 1 𝑣 1 2 2 𝑣 1 2 = 𝑃 2 𝑃𝑃 𝑃 2 2 𝑃 2 + 𝑚 𝑉 𝑚𝑚 𝑚 𝑉 𝑉𝑉 𝑚 𝑉 𝑔𝑔 ℎ 2 ℎ ℎ 2 2 ℎ 2 + 1 2 1 1 2 2 1 2 𝑚 𝑉 𝑚𝑚 𝑚 𝑉 𝑉𝑉 𝑚 𝑉 𝑣 2 2 𝑣 2 𝑣𝑣 𝑣 2 2 𝑣 2 𝑣 2 2 2 𝑣 2 2

𝑷 𝟏 +𝝆 𝒈𝒉 𝟏 + 𝟏 𝟐 𝝆 𝒗 𝟏 𝟐 = 𝑷 𝟐 +𝝆𝒈 𝒉 𝟐 + 𝟏 𝟐 𝝆 𝒗 𝟐 𝟐

𝑷+𝝆𝒈𝒉+ 𝟏 𝟐 𝝆 𝒗 𝟐 =𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕

𝑷 𝟏 +𝝆 𝒈𝒉 𝟏 + 𝟏 𝟐 𝝆 𝒗 𝟏 𝟐 = 𝑷 𝟐 +𝝆𝒈 𝒉 𝟐 + 𝟏 𝟐 𝝆 𝒗 𝟐 𝟐

𝑷 𝟏 +𝟎+ 𝟏 𝟐 𝝆 𝒗 𝟏 𝟐 = 𝑷 𝟐 +𝟎+ 𝟏 𝟐 𝝆 𝒗 𝟐 𝟐

Pressure 1

Pressure 2

Velocity 1

Velocity 2

𝑷 𝟏 + 𝟏 𝟐 𝝆 𝒗 𝟏 𝟐 = 𝑷 𝟐 + 𝟏 𝟐 𝝆 𝒗 𝟐 𝟐

Pressure 1

Pressure 2

Velocity 1

Velocity 2

𝑷 𝟏 − 𝑷 𝟐 = 𝟏 𝟐 𝝆 𝒗 𝟐 𝟐 − 𝟏 𝟐 𝝆 𝒗 𝟏 𝟐

THANK YOU!

Посмотрите также