Электронная таблица Microsoft Excel
Оценка 4.6

Электронная таблица Microsoft Excel

Оценка 4.6
doc
08.05.2020
Электронная таблица Microsoft Excel
5. Табличный процессор Microsoft Excel.doc

Задание 1



Реализовать поиск оптимального решения для задачи планирования работы школьного кондитерского цеха;

1. Подготовить таблицу к решению задачи оптимального планирования.

В режиме отображения формул таблица показана на рисунке. Ячейки В5 и С5 зарезервированы соответственно для значений х (план по изготовлению пирожков) и у (план по изготовлению пирожных). Ниже представлена система неравенств, определяющая ограничения на искомые решения. Неравенства разделены на левую часть (столбец В) и правую часть (столбец D). Знаки неравенств в столбце С имеют чисто оформительское значение. Целевая функция занесена в ячейку В15.

Формулы:
B15=B5+2*C5
B10=B5+4*C5
B11=B5+C5



2. Вызвать программу оптимизации и сообщить ей, где расположены данные. Для этого выполнить команду Сервис -> Поиск решения. На экране откроется соответствующая форма:



3. Выполнить следующий алгоритм:
=> ввести адрес ячейки с целевой функцией. В нашем случае это В15 (заметим, что если перед этим установить указатель мыши на ячейку В15, то ввод произойдет автоматически);
=> поставить отметку максимальному значению, т. е. сообщить программе, что нас интересует нахождение максимума целевой функции;
=> в поле Изменяя ячейки ввести В5:С5, т. е. сообщить, какое место отведено под значения переменных - плановых показателей;
=> в поле Ограничения ввести неравенства-ограничения, которые имеют вид: B10<=D10; B11<=D11; B12>=D12; B13>=D13. Ограничения вводятся следующим образом:
> щелкнуть на кнопке Добавить;
> в появившемся диалоговом окне Добавление ограничения ввести ссылку на ячейку В10, выбрать из меню знак неравенства <= и ввести ссылку на ячейку D10;
> снова щелкнуть на кнопке Добавить и аналогично ввести второе ограничение B11<=D11 и т. д.;
> в конце щелкнуть на кнопке ОК.
=> закрыть диалоговое окно Добавление ограничения. Перед нами снова форма Поиск решения:



=> указать, что задача является линейной (это многократно облегчит программе ее решение). Для этого щелкнуть на кнопке Параметры, после чего открывается форма Параметры поиска решения:



=> установить флажок линейная модель. Остальная информация на форме Параметры поиска решения чисто служебная, автоматически устанавливаемые значения нас устраивают, и вникать в их смысл не будем. Щелкнуть на кнопке ОК. Снова откроется форма Поиск решения.
=> щелкнуть на кнопке Выполнить — в ячейках B5 и С5 появляется оптимальное решение:



Справочная информация

В результате применения инструмента Поиск решения, получен следующий оптимальный план дневного производства кондитерского цеха:
нужно выпускать 600 пирожков и 100 пирожных. Эти плановые показатели соответствуют положению точки В на рис. 6.9 в учебнике. В этой точке значение целевой функции /(600, 100) = 800. Если один пирожок стоит 5 руб., то полученная выручка составит 4000 руб.


Задание 1 Реализовать поиск оптимального решения для задачи планирования работы школьного кондитерского цеха; 1

Задание 1 Реализовать поиск оптимального решения для задачи планирования работы школьного кондитерского цеха; 1

Выполнить следующий алгоритм: => ввести адрес ячейки с целевой функцией

Выполнить следующий алгоритм: => ввести адрес ячейки с целевой функцией

Остальная информация на форме

Остальная информация на форме
Скачать файл