II. Какие задачи считают комбинаторными?
Комбинаторные задачи
Задачи подсчёта числа комбинаций из конечного числа элементов
Комбинаторика – от латинского слова combinare, что означает «соединять, сочетать».
Методы комбинаторики находят широкое применение в физике, химии, биологии, экономики и др. областях знания.
Комбинаторику можно рассматривать как часть теории множеств – любую комбинаторную задачу можно свести к задаче о конечных множествах и их отображениях.
4
I. Уровни решения комбинаторных задач
1. Начальный уровень.
Задачи поиска хотя бы одного решения, хотя бы одного расположения объектов, обладающих заданным свойствами
- отыскание такого расположения десяти точек на пяти отрезках, при котором на каждом отрезке лежит по четыре точки;
- такого расположения восьми ферзей на шахматной доске, при котором они не бьют друг друга.
Иногда удаётся доказать, что данная задача не имеет решения
(например, нельзя расположить 10 шаров в 9 урнах так, что
бы в каждой урне было не более одного шара – хотя бы в
одной урне окажется не менее двух шаров).
5
2. Второй уровень.
Если комбинаторная задача имеет несколько решений, то возникает вопрос о подсчете числа таких решений, описании всех решений данной задачи.
3. Третий уровень.
Решения данной комбинаторной задачи отличаются друг от друга некоторыми параметрами. В этом случае возникает вопрос отыскания оптимального варианта решения такой задачи.
Например:
Путешественник хочет выехать из города А, посетить города В, С, и D. После чего вернуться в город А.
6
Путь | Длина пути | Путь | Длина пути |
ABCDA | 1555 | ACDBA | 1300 |
ABDCA | 1300 | ADBCA | 1450 |
ACBDA | 1450 | ADCBA | 1550 |
@ Gryznova A.K.
7
На рис. изображена схема путей, связывающих эти города. Различные варианты путешествий отличаются друг от друга порядком посещения городов В, С, и .D. Существует шесть вариантов путешествия. В таблице указаны варианты и длин каждого пути:
Комбинаторные задачи на оптимизацию приходится решать мастеру, стремящемуся к быстрейшему выполнению задания, агроному, стремящемуся к наивысшей урожайности на данных полях, и т.д.
8
Правила суммы и произведения
1. Сколько различных коктейлей можно составить из четырёх напитков, смешивая их в равных количествах по два?
AB, AC, AD, BC, BD, CD – всего 6 коктейлей
2. Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3 ?
Первой цифрой двузначного числа может одна из цифр 1, 2, 3 (цифра 0 не
может быть первой). Если первая цифра выбрана, то вторая может быть любая из
цифр 0, 1, 2, 3. Т.к. каждой выбранной первой соответствует четыре способа
выбора второй, то всего имеется
4 + 4 + 4 = 4·3 = 12 различных двузначных чисел.
10
А
D
С
В
«Примеры решения комбинаторных задач: перебор вариантов, правило суммы, правило умножения».
13
Сколькими способами могут быть расставлены 4 участниц финального забега на четырёх беговых дорожках?
Рп = 4· 3 ·2 ·1= 24 способа (перестановки из 4-х элементов)
1 2 3 4
2 3 4 1 3 4 1 2 4 1 2 3
3 4 2 4 2 3
4 3 4 2 3 2
3 4 1 4 3 1
4 3 4 1 1 3
2 4 1 4 1 2
4 2 4 1 2 1
2 3 1 3 1 2
3 2 3 1 2 1
1 дорожка
2 доржка
3доржка
4 дор.
Р е ш е н о п е р е б о р о м в а р и а н т о в
II. Перестановки (1)
К в а р т е т
Проказница Мартышка,
Осёл,
Козёл
Да косолапый Мишка
Затеяли сыграть Квартет.
…………………………………………………….
Ударили в смычки, дерут, а толку нет.
«Стой, братцы, стой! - кричит Мартышка. –
Погодите!
Как музыке идти? Ведь вы не так сидите»
14
4·3·2·1 = 4! способов
II. Перестановки (2)
Перестановкой из п - элементов называется комбинации, отличающиеся друг от друга лишь порядком следования элементов
Рп- число перестановок (Р первая буква французского слова permutation- перестановка)
Рп= n·(n-1)·(n-2)·(n-3)·(n-4)·. . .·3 ·2 ·1= n!
Рп = n!
15
В математике принято считать 0! =1 и 1! = 1
Размещения (1)
Четыре попутчик решили обменяться визитными карточками. Сколько всего карточек при этом было использовано?
получилось 12 карточек. Каждый из четырёх
попутчиков вручил визитку каждому из
трёх попутчиков
4 · 3 = 12
16
1
3
4
2
Комбинации, составленные из k элементов, взятых из n элементов, и отличающиеся друг от друга либо составом, либо порядком расположения элементов, называются размещениями из n элементов по k (0< k ≤n ).
- размещение из n элементов по k элементов. А первая буква
французского слова arrangement : «размещение»,
«приведение в порядок»
Размещения (2)
Пуст имеется 4 шара и 3 пустых ячейки. Обозначим шары буквами a, b, c, d. В пустые ячейки можно по разному разместить три шара из этого набора.
Выбирая по-разному первый, второй и третий шары, будем получать различные упорядоченные тройки шаров
Каждая упорядоченная тройка, которую можно составить из четырёх элементов называется размещением из четырёх элементов по три
17
d | b | c |
b | a | c |
a | c | b |
a | b | c |
Размещения (3)
Сколько же размещений можно составить из 4-х элементов (abcd) по три?
abc abd acb acd adb adc
bac bad bca bcd bda bdc
cab cad cba cbd cda cdb
dab dac dba dbc dca dcb
18
Р е ш е н о п е р е б о р о м в а р и а н т о в
Размещения (4)
Можно решить и не выписывая самих размещений:
первый элемент можно выбрать четырьмя способами, так им может быть любой элемент из четырёх;
для каждого первого второй можно выбрать тремя способами;
для каждых первых двух можно двумя способами выбрать третий элемент из двух оставшихся.
Получаем
19
= 4·3·2 = 24
Решено с использованием п р а в и л а у м н о ж е ни я
Сочетания
Сочетанием из п элементов по k называют любое множество, составленное из k элементов, выбранных из п элементов
20
В отличии от размещений в сочетаниях не имеет значение порядок элементов. Два сочетания отличаются друг от друга хотя бы одним элементом
© ООО «Знанио»
С вами с 2009 года.