Физические свойства минералов
Оценка 5

Физические свойства минералов

Оценка 5
Лекции +1
docx
окружающий мир
5 кл—11 кл +1
15.02.2020
Физические свойства минералов
Понятие «минерал» подразумевает твёрдое природное неорганическое кристаллическое вещество. Но иногда его рассматривают в неоправданно расширенном контексте, относя к минералам некоторые органические, аморфные и другие природные продукты, в частности некоторые горные породы, которые в строгом смысле не могут быть отнесены к минералам. Минералами считаются также некоторые природные вещества, представляющие собой в обычных условиях жидкости (например, самородная ртуть, которая приходит к кристаллическому состоянию при более низкой температуре).
Физические свойства минералов.docx

 

 

 

 

 

 

 

 

 

Физические свойства минералов

 

 

 

 

 

 

 

 

 

 

 

 

Содержание

1. Введение

3

2. Происхождение минералов

4

2.1 Физические свойства минералов

7

2.2 Минеральные виды

12

3. Заключение

15

4. Список используемой литературы

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Введение

     Понятие «минерал» подразумевает твёрдое природное неорганическое кристаллическое вещество. Но иногда его рассматривают в неоправданно расширенном контексте, относя к минералам некоторые органические, аморфные и другие природные продукты, в частности некоторые горные породы, которые в строгом смысле не могут быть отнесены к минералам. Минералами считаются также некоторые природные вещества, представляющие собой в обычных условиях жидкости (например, самородная ртуть, которая приходит к кристаллическому состоянию при более низкой температуре). Воду, напротив, к минералам не относят, рассматривая её как жидкое состояние (расплав) минерала лёд. Некоторые органические вещества — нефть, асфальты, битумы — часто ошибочно относят к минералам, либо выделяют их в особый класс «органические минералы», целесообразность чего весьма спорна. Некоторые минералы находятся в аморфном состоянии и не имеют кристаллической структуры. Это относится главным образом к т. наз. метамиктным минералам, имеющим внешнюю форму кристаллов, но находящимся в аморфном, стеклоподобном состоянии вследствие разрушения их изначальной кристаллической решётки под действием жёсткого радиоактивного излучения входящих в их собственный состав радиоактивных элементов (U,Th, и тд.). Различают минералы явнокристаллические, аморфные — метаколлоиды (например, опал, лешательерит и др.) и метамиктные минералы, имеющие внешнюю форму кристаллов, но находящиеся в аморфном, стеклоподобном состоянии.

«Минерал — это химически и физически индивидуализированный продукт природной физико-химической реакции, находящийся в кристаллическом состоянии» (Годовиков А. А., «Минералогия», М., «Недра», 1983).

Понятие «минерал» часто употребляется в значении «минеральный вид», то есть как совокупность минеральных тел данного химического состава с данной кристаллической структурой.

    Кристаллическая структура является и важнейшей диагностической характеристикой минерала, и носителем заложенной в минерале генетической информации, расшифровкой которой среди прочего занимается минералогия. Вопрос о целесообразности отнесения к минералам в порядке «исключений из правила» некоторых некристаллических (жидких или рентгеноаморфных) продуктов является спорным и до сих пор дискутируется учеными. Вместе с тем современные исследования показали, что некоторые аморфные, как считалось ранее, геологические продукты, например опал, устроены сложнее, чем считалось ранее и обладают внутренней «структурой дальнего порядка».

Некоторые разновидности лимонита, описанные в своё время как «метаколлоиды», оказались при детальном изучении скрытокристаллическими или волокнисто-сферолитовыми агрегатами гл. образом гётита, иногда с примесью лепидокрокита, гематита и ярозита. Представления о «колломорфном» происхождении некоторых минеральных форм (лимониты, «стеклянные головы» гётита, гематита, настурана и др.) были опровергнуты после их более углубленного изучения и анализа в работах Д. П. Григорьева, Ю. М. Дымкова и др. Коллоидные фазы существуют лишь как промежуточные в процессах массопереноса и минералообразования и являются одной из физико-химических сред, в которых или из которых происходит кристаллизация минералов.

 

 

2. Происхождение минералов

 

      Минералогия исследует происхождение, условия нахождения и природные ассоциации минералов. Со времени возникновения Земли примерно 4,6 млрд. лет назад многие минералы разрушились в результате механического дробления, химических преобразований или плавления. Но элементы, слагавшие эти минералы, сохранились, перегруппировались и образовали новые минералы. Таким образом, существующие ныне минералы являются продуктами процессов, развивавшихся на протяжении геологической истории Земли.

     Большая часть земной коры сложена изверженными породами, которые местами перекрыты относительно маломощным покровом осадочных и метаморфических пород. Поэтому состав земной коры в принципе соответствует усредненному составу изверженной породы. Восемь элементов составляют 99% массы земной коры и соответственно 99% массы слагающих ее минералов.

      По элементному составу земная кора представляет собой каркасную постройку, состоящую из ионов кислорода, связанных с более мелкими ионами кремния и алюминия. Таким образом, главными минералами являются силикаты, на долю которых приходится ок. 35% всех известных минералов и ок. 40% - наиболее распространенных. Важнейшие из них - полевые шпаты (семейство алюмосиликатов, содержащих калий, натрий и кальций, реже - барий). Другие распространенные породообразующие силикаты представлены кварцем (впрочем, он чаще относится к оксидам), слюдами, амфиболами, пироксенами и оливином.

      Изверженные породы. Изверженные, или магматические, породы образуются при охлаждении и кристаллизации расплавленной магмы. Процентное содержание различных минералов и, следовательно, тип образовавшейся породы зависят от соотношения элементов, содержавшихся в магме во время ее затвердевания. Каждый тип изверженной горной породы обычно состоит из ограниченного набора минералов, называющихся главными породообразующими. В дополнение к ним могут присутствовать в меньших количествах второстепенные и акцессорные минералы. Например, главными минералами в граните могут быть калиевый полевой шпат (30%), натрий-кальциевый полевой шпат (30%), кварц (30%), слюды и роговая обманка (10%). В качестве акцессорных минералов могут присутствовать циркон, сфен, апатит, магнетит и ильменит.

      Изверженные породы обычно классифицируют в зависимости от вида и количества каждого из содержащихся в них полевых шпатов. Однако в некоторых породах полевой шпат отсутствует. Далее изверженные породы классифицируют по их структуре, которая отражает условия затвердевания породы. Медленно кристаллизующаяся глубоко в недрах Земли магма порождает интрузивные плутонические породы с крупно- или среднезернистой структурой. Если магма извергается на поверхность в виде лавы, она быстро остывает, и возникают тонкозернистые вулканические (эффузивные, или излившиеся) породы. Иногда некоторые вулканические породы (например, обсидиан) остывают столь быстро, что не успевает произойти их кристаллизация; подобные породы имеют стекловидный облик (вулканические стекла).

      Осадочные породы. Когда коренные породы выветриваются или размываются, обломочный или растворенный материал оказывается включенным в состав осадочных пород. В результате химического выветривания минералов, происходящего на границе литосферы и атмосферы, формируются новые минералы, например, глинистые - из полевого шпата. Некоторые элементы высвобождаются при растворении минералов (например, кальцита) в поверхностных водах. Однако другие минералы, например кварц, даже механически раздробленные, сохраняют устойчивость к химическому выветриванию.

Высвободившиеся при выветривании механически и химически устойчивые минералы с достаточно высокой плотностью образуют на земной поверхности россыпные месторождения. Из россыпей, чаще всего аллювиальных (речных), добывают золото, платину, алмазы, иные драгоценные камни, оловянный камень (касситерит), минералы других металлов. В определенных климатических условиях формируются мощные коры выветривания, нередко обогащенные рудными минералами. С корами выветривания бывают сопряжены промышленные месторождения бокситов (руд алюминия), скопления гематита (железных руд), водных силикатов никеля, минералов ниобия и других редких металлов.

      Основная масса продуктов выветривания выносится по системе водотоков в озера и моря, на дне которых образует слоистую осадочную толщу. Глинистые сланцы сложены в основном глинистыми минералами, а песчаник состоит преимущественно из сцементированных зерен кварца. Растворенный материал может извлекаться из воды живыми организмами или выпадать в осадок в результате химических реакций и испарения. Карбонат кальция поглощается из морской воды моллюсками, которые строят из него свои твердые раковины. Большая часть известняков образуется в результате аккумуляции раковин и скелетов морских организмов, хотя частично карбонат кальция осаждается химическим путем.

Эвапоритовые залежи формируются в результате испарения морской воды. Эвапориты - обширная группа минералов, в число которых входят галит (поваренная соль), гипс и ангидрит (сульфаты кальция), сильвин (хлорид калия); все они имеют важное практическое применение. Эти минералы осаждаются также при испарении с поверхности соляных озер, но в этом случае повышение концентрации редких элементов может привести к дополнительному осаждению некоторых других минералов. Именно в такой обстановке образуются бораты.

      Метаморфические породы. Региональный метаморфизм. Изверженные и осадочные породы, захороненные на большой глубине, под действием температуры и давления испытывают преобразования, называющиеся метаморфическими, в ходе которых меняются первоначальные свойства горных пород, а исходные минералы перекристаллизовываются или полностью трансформируются. В результате минералы обычно располагаются вдоль параллельных плоскостей, придавая породам сланцеватый облик. Тонкосланцеватые метаморфические породы называются сланцами. Они часто бывают обогащены пластинчатыми силикатными минералами (слюдой, хлоритом или тальком). Более грубосланцеватые метаморфические породы - гнейсы; в них чередуются полосы кварца, полевого шпата и темноцветных минералов. Когда сланцы и гнейсы содержат какой-либо типично метаморфический минерал, это отражается в названии породы, например, силлиманитовый или ставролитовый сланец, кианитовый или гранатовый гнейс.

      Контактовый метаморфизм. При подъеме магмы в верхние слои земной коры в породах, в которые она внедрилась, обычно происходят изменения, т.н. контактовый метаморфизм. Эти изменения проявляются в перекристаллизации первоначальных или образовании новых минералов. Степень метаморфизма зависит как от типа магмы, так и от типа породы, которую она пронизывает. Глинистые и близкие им по химическому составу породы преобразуются в контактовые роговики (биотитовые, кордиеритовые, гранатовые и др.). Наиболее интенсивные изменения происходят, когда гранитная магма внедряется в известняки: термическое воздействие является причиной их перекристаллизации и образования мрамора; в результате химического взаимодействия с известняками отделяющихся от магмы растворов образуется большая группа минералов (силикаты кальция и магния: волластонит, гроссуляровый и андрадитовый гранаты, везувиан, или идокраз, эпидот, тремолит и диопсид). В некоторых случаях при контактовом метаморфизме привносятся рудные минералы, что делает породы ценными источниками получения меди, свинца, цинка и вольфрама.

     Метасоматоз. В результате регионального и контактового метаморфизма не происходит существенного изменения химического состава исходных пород, а меняются лишь их минеральный состав и внешний облик. Когда растворами привносятся одни элементы и выносятся другие, происходит значительное изменение химического состава пород. Такие вновь образовавшиеся породы называются метосоматическими. Например, взаимодействие известняков с растворами, выделяемыми гранитной магмой в ходе кристаллизации, приводит к образованию вокруг гранитных массивов зон контактово-метасоматических руд - скарпов, которые нередко вмещают оруденение.

 

 

2.1 Физические свойства минералов

 

     Физические свойства минералов обусловлены их внутренним строением и химическим составом. К физическим свойствам относят плотность, механические, оптические, магнитные, электрические и термические характеристики, радиоактивность и люминесценцию.

     Под плотностью минерала понимается вес единицы его объема. Плотность зависит от атомного веса атомов или ионов, слагающих кристаллическое вещество, и от плотности их упаковки в кристаллической решетке минерала. У природных веществ она варьирует в широких пределах: от значений менее 1 г/смдо 23 г/см3. По плотности минералы подразделяют на легкие (до 2,5 г/см3), средние (2,5-4,0 г/см3), тяжелые (4,0-8,0 г/см3) и весьма тяжелые (более 8,0 г/см3). Легкими являются нефти, угли, гипс, галит; к средним относят кварц, кальцит, полевые шпаты, к тяжелым – рудные минералы.

Для отнесения минерала к одной из этих групп достаточно определить его плотность приблизительно – путем взвешивания на ладони.

Механические свойства включают твердость, спайность, излом, хрупкость, ковкость, гибкость.

      Твердость минерала – это степень его сопротивления внешнему механическому воздействию (царапанью и т.д.). Она оценивается по десятибалльной шкале относительной твердости, предложенной немецким ученым Ф. Моосом в 1811 г. Относительная твердость определяется путем царапанья исследуемого минерала острыми краями эталонных минералов (пассивная твердость) или эталонных минералов исследуемым (активная твердость). Минералы-эталоны, твердость которых (в условных единицах) соответствует их номерам, располагается в шкале Мооса следующим образом: 1 – тальк, 2 – гипс, 3 – кальцит, 4 – флюорит, 5 – апатит,

6 – ортоклаз, 7 – кварц, 8 – топаз, 9 – корунд, 10 – алмаз.

      Если, например, гипс не оставляет царапины на поверхности исследуемого минерала, а кальцит оставляет, значит его твердость равна 2,5.

В практике полевых работ при отсутствии шкалы Мооса твердость минералов определяется при помощи распространенных предметов с известной твердостью. Например, у карандаша она равна 1, у ногтя – 2-2,5, желтой монеты – 3-3,5, стекла – 5, стального стержня (гвоздя) – 6. Большинство природных соединений обладает твердостью от 2 до 6.

На лабораторных занятиях определение твердости минерала следует начинать с проверки, царапает ли он стекло, а не наоборот, чтобы не портить образцы. Затем уточнить значение твердости (если в этом есть необходимость) при помощи минералов шкалы Мооса.

      Спайность – способность кристаллов и кристаллических зерен раскалываться или расщепляться по определенным кристаллографическим направлениям с образованием ровных блестящих поверхностей, называемых плоскостями спайности. Различают спайности:

·         весьма совершенную – минералы (слюды, хлорит) легко расщепляются по плоскостям напластования на тончайшие листочки, образуя зеркально-блестящие плоскости спайности;

·         совершенную – минералы (кальцит, галит, полевые шпаты) при ударе раскалываются по спайности, а образующиеся выколки по форме повторяют кристалл;

·         среднюю – на сколах минералов (полевые шпаты, пироксены) наблюдаются как плоскости спайности, так и неровные изломы в произвольных направлениях;

·         несовершенную – зерна минералов ограничены неправильными поверхностями, за исключением отдельных граней кристаллов (сера, оливин);

·         весьма несовершенную (или спайность отсутствует) – минерал всегда раскалывается по произвольным неровным поверхностям, иногда образуя характерный излом (кварц, корунд, магнетит).

Минералы, у которых спайность отсутствует, обладают отдельстью.

     Отдельность – это способность минерала раскалываться лишь в определенных участках, а не по определенным плоскостям. Трещины отдельности более грубые, не вполне плоские, ориентировка их зависит от характера распределения включений, двойникования и т.д.

Излом – форма поверхности, образующаяся при раскалывании минералов. Характер излома зависит от спайности. Различают ровный и неровный, ступенчатый, раковистый и мелко раковистый, занозистый, зернистый и шероховатый, крючковатый и др. разновидности изломов.

Ровный излом проходит по плоскостям спайности. Ступенчатый излом наблюдается у минералов с совершенной спайностью; неровный и раковистый (похожий на поверхность раковин) – у минералов с несовершенной и весьма несовершенной спайностью. Занозистым считается излом, поверхность которого покрыта ориентированными занозами, представляющими собой зерна кристаллов удлиненного облика (роговая обманка, гипс). Зернистый излом встречается у минералов с изометрическим (или близким) обликом кристаллов (галит). Землистым изломом обладают тонкодисперсные агрегаты с матовой поверхностью (лимонит, каолинит), крючковатым – самородные металлы.

     Хрупкость, ковкость, гибкость минералов определяются визуально, по их реакции на механические напряжения.

Оптические свойства включают цвет минералов, цвет черты, степень прозрачности, блеск.

    Цвет (окраска) минерала является важным диагностическим признаком. Названия многим минералам даны по их цвету (например, хлорит в переводе с греческого означает «зеленый», альбит – с латинского «белый», рубин – «красный»). В природных соединениях окраска минерала обусловлена следующими причинами:

·         наличием в составе минерала элемента-красителя (хромофора). Наиболее важные хромофоры – Cu, Ni, Co, Ca, Mn, Fe;

·         наличием тонко распыленных механических окрашенных примесей, которые могут быть как органического, так и неорганического происхождения (бурые окислы железа, черные окислы марганца и т.п.);

·         наличием субмикроскопических ориентированных включений и внутренних поверхностей трещин спайности. В некоторых минералах кроме основной окраски иногда на плоскостях спайности или полированных поверхностях при некоторых углах поворота вспыхивают яркие синие, голубые или зеленоватые переливы. Подобные явления получили название иризация. Наблюдается это явление чаще всего в плагиоклазах (лабрадор);

·         наличием пестрых поверхностных образований, т.н. побежалости, например, золотистые пленки наблюдаются на поверхности бурых железняков, темно-желтые или пестрые – на поверхности халькопирита.

На лабораторных занятиях цвет минералов определяется на глаз, путем сравнения с известными цветами.

      Цвет черты – это цвет минерала в тонком порошке. Этот признак в сравнении с окраской минералов является более постоянным, а следовательно, и более надежным их диагностическим признаком.

Цвет черты не всегда совпадает с цветом самого минерала. Например, у магнетита и цвет, и цвет черты черные, а у гематита, который в плотных агрегатах имеет стально-серый или черный цвет, черта вишнево-красная. Большинство светлоокрашенных и прозрачных минералов имеют бесцветную черту.

Практически черта определяется с помощью неглазурованной фарфоровой пластинки – бисквита. Порошок получается в виде следа на пластинке, если прочертить по ней минералом. Черту на бисквите оставляют минералы с твердостью до 6 (6 – твердость бисквита). Более твердые минералы черты не оставляют, а царапают бисквит. Для них черта не определяется.

     Прозрачностью называется свойство минералов пропускать сквозь себя свет. По степени прозрачности минералы делятся на 3 группы:

·         прозрачные – минералы, пропускающие свет в пластинах любой толщины (горный хрусталь, исландский шпат);

·         полупрозрачные – минералы, просвечивающие только в тонких пластинах (опал, халцедон);

·         непрозрачные – не пропускают свет даже в тончайших пластинках (рудные минералы).

    Блеск – способность минерала отражать падающий на него световой поток. Гладкие поверхности (грани, плоскости спайности) всегда лучше отражают свет, чем неровные. Различают следующие виды блеска:

·         металлический – самый сильный блеск минералов. Наблюдается у темноокрашенных непрозрачных минералов. Визуально аналогичен блеску неокисленной поверхности металлов. Таким блеском обладают самородные металлы.

·         полуметаллический (металловидный) – блеск, напоминающий блеск потускневшей поверхности металлов. Наблюдается у гематита, графита.

·         алмазный – самый сильный блеск светлоокрашенных минералов. В качестве примера может служить блеск алмазов, серы на гранях кристаллов.

·         стеклянный – самый распространенный блеск светлоокрашенных и бесцветных минералов. Такой блеск у кварца (на гранях), галита, карбонатов и сульфатов.

Если минерал в изломе имеет скрытобугорчатую или ямчатую поверхность, свет при отражении рассеивается беспорядочно, создается жирный блеск. Для скрытокристаллических масс (халцедон) и твердых светлоокрашенных гелей (опал), поверхности которых обладают более выраженной неровностью, характерен восковой блеск. Тонкодисперсные массы, обладающие тонкой пористостью, имеют матовый блеск. В данном случае падающий свет очень сильно рассеивается при отражении и поверхность минерала кажется матовой (каолинит, гидроокислы железа).

Для минералов, обладающих явно выраженной ориентировкой элементов строения, характерны шелковистый и перламутровый блески. Шелковистый блеск встречается у минералов с параллельно-волокнистым строением (асбест, гипс-селенит), перламутровый – у прозрачных минералов со слоистой структурой (слюды, тальк).

Магнитные свойства – это совокупность свойств, характеризующих способность минералов намагничиваться во внешнем магнитном поле. На практике испытание магнитности минералов производится с помощью горного компаса. Магнитные минералы (магнетит) отклоняют стрелку от естественного направления (на север).



 

 

 

2.2 Минеральные виды

 

       Минеральные виды реализованы в природе в виде физических тел, - минеральных индивидов и минеральных агрегатов.

Минеральный вид- это совокупность минералов (минеральных индивидов), обладающих химическим составом, варьирующим в некоторых пределах, обеспечивающих сохранение фиксированного структурного типа, или в пределах, устанавливаемых согласно определенным правилам. Таким образом, к одному минеральному виду относятся минеральные индивиды с близкой конституцией. Понятие Минеральный вид имеет в известной мере абстрактный характер, представляя собой результат обобщения данных по химическим составам реальных минеральных индивидов. В минералогии в настоящее время термин «минеральный вид» используется только при обсуждении вопросов классификации минеральных индивидов, обычно его заменяют односложным термином «минерал» и применяют для обозначения вида или одного минерального индивида. Так, о кристалле горного хрусталя можно говорить в единственном числе как о минерале; что касается термина «минеральный индивид», то его часто заменяют словами «зерно», «кристалл» или просто «индивид».

Минеральный вид (mineral species), по аналогии с понятием вида в биологической систематике, является основной, наиболее дробной систематической единицей (таксоном), обязательной к применению в минералогической систематике, и входит во все минералогические классификации.

В пределах минерального вида могут выделяться разновидности минералов (varieties), обладающие характерными морфологическими, цветовыми или иными свойствами, определяемыми, в частности, наличием определенных примесей. Употребление названий разновидностей минералов в научной литературе в последние годы не приветствуется, во избежание избыточного обилия терминов, но совершенно очевидно, что от применения таких названий разновидностей кварца, как халцедон, аметист, или агат, мало кто из геологов откажется.

Различные минеральные виды, имеющие родственный химический состав и обладающие однотипной кристаллической структурой, обычно объединяются в группы; широкие различия в химическом составе таких минеральных видов определяются изоморфными замещениями.

Минеральные индивиды, обладающие одинаковым химическим составом, но различными кристаллическими структурами, являются различными полиморфными модификациями (полиморфами) кристаллических веществ и относятся к разным минеральным видам. В большинстве случаев полиморфные модификации веществ с данным составом обладают различными сингониями, например: кварц (тригональная сингония) и кристобалит (тетрагональная сингония); кальцит (тригональная сингония), арагонит (ромбическая сингония) и фатерит (гексагональная сингония); пирит (кубическая сингония) и марказит (ромбическая сингония). Однако, встречаются и полиморфы, обладающие одинаковой сингонией (тетрагональные рутил и анатаз), но они принадлежат при этом к различным структурным типам. Различные политипы, в отличие от полиморфов, в подавляющем большинстве случаев относятся к одному минеральному виду и рассматриваются в качестве разновидностей.

Минеральные индивиды - составные части минеральных агрегатов. Это отдельные кристаллы, зерна и сферические или близкие к сферическим выделения минералов, отделенные друг от друга физическими поверхностями раздела и представляющие собой форму нахождения минеральных видов в природе.

     Минеральный индивид - исходное понятие минерологии, означающее зерна и идиоморфные кристаллы, в виде которых в природе представлены минеральные виды; индивиды могут быть зернами - «монокристаллами» или сферокристаллами, из которых строятся простые минеральные агрегаты .

Минеральные индивиды в литосфере встречаются совместно, образуя закономерные минеральные ассоциации (сообщества), принадлежащие либо одному минеральному виду - мономинеральная ассоциация (мрамор), либо разным минеральным видам- полиминеральная ассоциация (гранит). В одних ассоциациях индивиды, относящиеся к определенному минеральному виду, сходны между собой в каждой конкретной минеральной ассоциации; часто это легко заметить по какому-либо признаку- цвету, форме выделения, величине и т. д. В других ассоциациях зерна, принадлежащие к одному виду, могут резко отличаться в зависимости от условий нахождения. Например, зерна кварца из гранитов решительно отличаются от индивидов этого же минерала, но слагающего кварцевые жилы (особенно золотоносные). Каждый минеральный вид отражает условия своего нахождения в литосфере. Характерные признаки, по которым можно однозначно определить какие-либо условия среды его существования в земной коре, получили название типоморфных. Кварц из золотоносных жил молочно-белый, сливной, часто с примесями сульфидов, нередко ноздреватый, тогда как зерна его из гранита - стекловидные, сероватого или даже черного (дымчатого) цвета. По ряду резких устойчивых индивидуальных признаков, обусловленных строением агрегата, окраской, формой индивидов, в пределах минерального вида выделяют разновидности минералов.

Минеральный индивид обладает множеством свойств. Свойства, которые позволяют надежно различать минеральные виды между собой, называются диагностическими признаками, а выявление этих признаков на минерале и процесс его идентификации (отождествления) -определением минерала. Наиболее совершенный метод идентификации минералов может быть основан на установлении их конституции, но в настоящее время практически это сделать нельзя, так как нет доступных приборов. Кроме того, наиболее распространенные минералы относительно легко определяются по обычным диагностическим признакам, по их словесному «портрету» - наружному виду.

Определение минералов визуально с применением простейших приемов имеет важное значение при их поисках. В этом случае исследователь обязан среди большого количества зерен различной формы и величины увидеть наиболее важные индивиды, представляющие научный и практический интерес. «Раньше, чем определять минерал, нужно его увидеть. В качествах работника по горному делу неумение видеть минерал является пороком гораздо худшим, чем неумение его определить»,- писал Н. М. Успенский. В поиске «чувственный образ» минерала является руководящим. Поиски минералов - самая важная задача исследования, которая решается при изучении вещественного состава руд или горных пород. Для того чтобы выявить на данном объекте все минеральные виды, нужно знать их характерные признаки, основные законы совместного нахождения минералов и условия, в которых они встречаются в природе. В итоге чрезвычайно важно по первому взгляду установить руду, ее качество, узнать горную породу.

Способность «видеть минерал» приобретается путем систематического изучения коллекций минералов, не только путем их рассматривания, но и посредством различных экспериментов на образцах. Только опыты на минералах и их сбор на месторождениях в конечном счете дают полноценное знание науки о минералах.

В природе относительно редко встречаются отдельные хорошо ограненные кристаллы, чаще минералы образуют различные скопления - агрегаты. В минералогии их принято подразделять по морфологии: зернистые, плотные, землистые агрегаты; друзы, щетки, секреции, конкреции, оолиты, сферолиты, натечные агрегаты, дендриты, налеты и примазки.

Минеральные агрегаты - это срастания минеральных индивидов одного и того же или разных минералов. Они могут быть одно- и многоэтапными.

 

3. Заключение

 

       Минералогия - основание, фундамент всех геологических наук, целью которых, как считал В.И. Вернадский, является всестороннее изучение земной коры - верхней оболочки земного шара, доступной непосредственному наблюдению и исследованию. Эта часть Земли, не имеющая четких границ, представляет собой геологическое пространство, которое зародилось и существует на нашей планете геологическое время. Земная кора, по В.И. Вернадскому, состоит из трех оболочек: твердой - литосферы, жидкой - гидросферы и газообразной - атмосферы. Более 90 % вещества земной коры сосредоточено в литосфере в виде минералов; этим и определяется важное значение минералогии в научной и производственной деятельности. В конечном счете, геологические науки должны установить историю различных процессов, которые привели земную кору к современному состоянию. Минералогия среди этих наук занимается всесторонним изучением минеральных индивидов.

      Что же такое современная минералогия? Это наука о минералах, которая изучает во взаимной связи их состав, кристаллическое строение, их свойства, условия образования, практическое и теоретическое значение. В соответствии с этим главными задачами минералогии являются:

     Всестороннее изучение и определение физических и химических свойств минералов во взаимной связи с их химическим составом и кристаллической структурой.

     Изучение закономерностей сочетания минералов и последовательности образования минералов в горных породах и рудах с целью выяснения условий генезиса минералов и воссоздания последовательности разнообразных процессов минералообразования в истории развития изучаемого объекта (рудные жилы, массивы горных пород, месторождения, земная кора, планеты и их спутники и т.д.).

 

 

 

 

 

 

 

 

 

 

4. Список используемой литературы

 

1. Лазаренко Е.К., Курс минералогии

2. Общая геология: в 2 тт. / Под ред. Л.К. Соколовского/ М.: КДУ, 2006.

3.  Минералы и горные породы. Т.Б. Здорик, В.В. Матиас, И.Н. Тимофеев, Л.Г. Фельдман.

4.  И. Костов, Минералогия, "Мир".

5. Годовиков А.А. Краткий очерк по истории минералогии. РАН.

 

 

 


 

Физические свойства минералов

Физические свойства минералов

Содержание 1. Введение 3 2

Содержание 1. Введение 3 2

Введение Понятие «минерал» подразумевает твёрдое природное неорганическое кристаллическое вещество

Введение Понятие «минерал» подразумевает твёрдое природное неорганическое кристаллическое вещество

Некоторые разновидности лимонита, описанные в своё время как «метаколлоиды», оказались при детальном изучении скрытокристаллическими или волокнисто-сферолитовыми агрегатами гл

Некоторые разновидности лимонита, описанные в своё время как «метаколлоиды», оказались при детальном изучении скрытокристаллическими или волокнисто-сферолитовыми агрегатами гл

Изверженные породы. Изверженные, или магматические, породы образуются при охлаждении и кристаллизации расплавленной магмы

Изверженные породы. Изверженные, или магматические, породы образуются при охлаждении и кристаллизации расплавленной магмы

В определенных климатических условиях формируются мощные коры выветривания, нередко обогащенные рудными минералами

В определенных климатических условиях формируются мощные коры выветривания, нередко обогащенные рудными минералами

Контактовый метаморфизм. При подъеме магмы в верхние слои земной коры в породах, в которые она внедрилась, обычно происходят изменения, т

Контактовый метаморфизм. При подъеме магмы в верхние слои земной коры в породах, в которые она внедрилась, обычно происходят изменения, т

Легкими являются нефти, угли, гипс, галит; к средним относят кварц, кальцит, полевые шпаты, к тяжелым – рудные минералы

Легкими являются нефти, угли, гипс, галит; к средним относят кварц, кальцит, полевые шпаты, к тяжелым – рудные минералы

Минералы, у которых спайность отсутствует, обладают отдельстью

Минералы, у которых спайность отсутствует, обладают отдельстью

В некоторых минералах кроме основной окраски иногда на плоскостях спайности или полированных поверхностях при некоторых углах поворота вспыхивают яркие синие, голубые или зеленоватые переливы

В некоторых минералах кроме основной окраски иногда на плоскостях спайности или полированных поверхностях при некоторых углах поворота вспыхивают яркие синие, голубые или зеленоватые переливы

Блеск – способность минерала отражать падающий на него световой поток

Блеск – способность минерала отражать падающий на него световой поток

Минеральные виды Минеральные виды реализованы в природе в виде физических тел, - минеральных индивидов и минеральных агрегатов

Минеральные виды Минеральные виды реализованы в природе в виде физических тел, - минеральных индивидов и минеральных агрегатов

В большинстве случаев полиморфные модификации веществ с данным составом обладают различными сингониями, например: кварц (тригональная сингония) и кристобалит (тетрагональная сингония); кальцит (тригональная сингония), арагонит (ромбическая…

В большинстве случаев полиморфные модификации веществ с данным составом обладают различными сингониями, например: кварц (тригональная сингония) и кристобалит (тетрагональная сингония); кальцит (тригональная сингония), арагонит (ромбическая…

Минеральный индивид обладает множеством свойств

Минеральный индивид обладает множеством свойств

Заключение Минералогия - основание, фундамент всех геологических наук, целью которых, как считал

Заключение Минералогия - основание, фундамент всех геологических наук, целью которых, как считал

Список используемой литературы 1

Список используемой литературы 1
Скачать файл