Изучение трудных вопросов школьного курса физики
При обучении механике в средней школе решают определенные образовательные, воспитательные задачи и задачи развития учащихся.
Образовательные задачи определяются, прежде всего, тем, что в механике вводят основные понятия (масса, сила, импульс тела, энергия и т. д.), являющиеся «инструментом» познания в науке – физике, В этом смысле механику справедливо считают фундаментом физики. В механике учащиеся знакомятся с физической теорией – классической механикой Ньютона и такими обобщениями, как закон всемирного тяготения, законы сохранения импульса и энергии, общие условия равновесия механических систем и др.
Воспитательные задачи решаются путем формирования диалектико-материалистического взгляда на природу и ее познание, формирования политехнических знаний и умений (знания научных основ современной механизации производства, на транспорте и в сельском хозяйстве). Основа трудового воспитания на уроках физики при изучении механики – политехническое обучение, в процессе которого школьников знакомят с одним из основных направлений современного производства – механизацией. Учащиеся узнают о простых механизмах, различных видах передачи движения, законах движения и др. При проведении лабораторных работ они осваивают некоторые практические умения в обращении с измерительными инструментами. Трудолюбие воспитывают и на примерах работы ученых и изобретателей, показывая, какую огромную роль в их научных открытиях играл труд. И. Ньютон говорил: «Поверьте мне, если мои исследования и принесли несколько полезных результатов, то они обязаны труду и терпению».
Первая особенность этого раздела заключается в том, что именно с механики начинают изучение курса физики IX–XI классов. Это объясняется тем, что механические процессы являются формой движения, наиболее доступной для наблюдения. К тому же моделирование физических систем в классической физике связано с созданием механических образов. Это определяет место механики в общеобразовательном курсе физики и требует от учителя внимания к прочному усвоению учащимися материала. Вторая особенность – в механике достаточно полно представлена физическая теория. (Ни в одном другом разделе школьного курса физики этого нет.) Поэтому учителю предоставляется возможность на примере механики проиллюстрировать структуру физической теории.
В любой физической теории можно условно выделить основание, ядро и выводы.
Основанием механической теории являются идеализированный объект – материальная точка, определенное число экспериментальных фактов (опыты Галилея, Кавендиша и др.), основные физические величины – перемещение, скорость, ускорение, масса материальной точки.
Ядро механической теории содержит систему абстракций (постулаты об однородности и изотропности пространства, об однородности времени, о мгновенном воздействии одного тела на другое без материальных посредников), законы Ньютона, принцип независимости действия сил, формулировку основной задачи механики. Выводы этой теории включают возможность определения положения материальной точки в пространстве в любой момент времени по заданным силе (или векторной сумме сил) и начальным условиям.
Основные выводы, к которым приводит теория механики и которые должны быть усвоены учащимися, следующие.
1) Состояние изолированной системы материальных точек для некоторого момента времени вполне определяется их координатами и импульсом.
2) Материальные точки действуют друг на друга с силами, изменяющими их импульсы.
3) Состояние механической системы во все последующее время однозначно вытекает из ее начального состояния и определяется уравнениями Ньютона.
4) Взаимодействие осуществляется на расстоянии (минуя материальные носители) и передается мгновенно (принцип дальнодействия). Механика Ньютона не рассматривает природу сил.
Третья особенность раздела – использование эксперимента в преподавании механики. Эксперимент является источником познания и критерием истинности любой теории, поэтому он должен лежать в основе изучения и механики. В механике большое значение приобретают классические опыты, явившиеся поворотным пунктом в развитии науки. Они составляют особую группу опытов. Это опыты по изучению движения падающих тел и опыты с маятниками, опыты Галилея и Ньютона по экспериментальному доказательству равенства инертной и гравитационной масс, опыты Кавендища, Жолли, Рихарца по обнаружению тяготения и измерению гравитационной постоянной и др. Их не всегда можно воспроизвести в школе. В этом случае их можно проиллюстрировать с помощью различных средств наглядности – учебных кинофильмов, моделей, таблиц и др.
В разделе «Молекулярная физика» учащиеся изучают поведение качественно нового материального объекта: системы, состоящей из большого числа частиц (молекул и атомов), новую, присущую именно этому объекту форму движения (тепловую) и соответствующий ей вид энергии, (внутреннюю). Здесь учащихся впервые знакомят со статистическими закономерностями, которые используют для описания поведения большого числа частиц. Формирование статистических представлений позволяет понять смысл необратимости тепловых процессов. Именно необратимость является отличительным свойством тепловых процессов и позволяет говорить о тепловом равновесии, температуре, понять принцип работы тепловых машин.
Задача учителя — рассмотреть в единстве два метода описания тепловых явлений и процессов: термодинамический (феноменологический), основанный на понятии энергии, и статистический, основанный на молекулярно-кинетических представлениях о строении вещества. При рассмотрении статистического и термодинамического методов необходимо четко разграничить знания, полученные эмпирически, и знания, полученные в результате моделирования внутреннего строения вещества и происходящих с ним явлений и процессов.
Важно показать, что эти два подхода, по сути, описывают с разных точек зрения состояние одного и того же объекта и потому дополняют друг друга. В связи с этим, формируя такие понятия, как температура, внутренняя энергия, идеальный газ и т. д., учитель должен раскрыть их содержание как с термодинамической, так и с молекулярнокинетической точки зрения.
В разделе «Молекулярная физика» изучают молекулярно-кинетическую теорию строения вещества, основные положения которой рассматривали еще в VII классе. Изучая физику в VII и VIII классах, учащиеся научились объяснять целый ряд физических явлений, свойств веществ (свойства жидкостей и газов, давление, тепловые явления и пр.) с точки зрения внутренней структуры вещества. Однако понятия, составляющие содержание соответствующих тем, изучали на уровне представлений, а все явления описывали качественно. Поэтому при преподавании молекулярной физики в X классе знания, имеющиеся у учащихся, нужно актуализировать, углубить и расширить, довести их до уровня понятий и количественного описания явлений. В частности, в курсе физики X класса изучают основное уравнение молекулярно-кинетической теории газов; значительно глубже, чем в VII классе, рассматривают свойства газов, жидкостей и твердых тел.
В разделе получают дальнейшее развитие энергетические представления, происходит обобщение закона сохранения энергии на тепловые процессы, вводят формулу первого закона термодинамики и рассматривают применение этого закона к анализу конкретных процессов. Изучение одного из основных принципов термодинамики имеет огромное познавательное и мировоззренческое значение для десятиклассников.
Мировоззренческое значение раздела «Молекулярная физика» трудно переоценить. При его изучении происходит углубление понятия материи. Молекулы и атомы являются вещественной формой материи, объективно существующей в окружающем мире. Они обладают массой, импульсом, энергией. Являясь видом материи, молекулы и атомы имеют присущие материи свойства, одно из которых — движение. Молекулы и атомы участвуют в особом движении, называемом тепловым, которое отличается от простейшего механического движения большой совокупностью участвующих в нем частиц и хаотичностью. Тепловое движение описывается статистическими законами. В связи с этим важно показать школьникам различие между статистическими и динамическими закономерностями, соотношение между ними и обратить внимание учащихся на отражение в этих закономерностях категорий необходимого и случайного.
Раздел «Молекулярная физика» дает прекрасную возможность для демонстрации дедуктивного метода изучения явлений природы. Применение дедукции в преподавании вносит свой вклад в развитие абстрактного мышления учащихся.
Велико политехническое значение этого раздела курса физики. Достижения молекулярной физики являются научной основой такой отрасли промышленности, как материаловедение. Знание внутреннего строения тел позволяет создавать материалы с заранее заданными свойствами, целенаправленно работать над повышением твердости, термостойкости, теплопроводности металлов и сплавов.
Изучение тепловых явлений дает возможность ознакомить учащихся c основами теплоэнергетики, отрасли, занимающей в нашей стране первое место в обеспечении энергией нужд промышленности и быта.
Раздел «Электродинамика»— один из наиболее сложных разделов школьного курса, где изучают электрические, магнитные явления, электромагнитные колебания и волны, вопросы волновой оптики и элементы специальной теории относительности.
Решение общеобразовательных задач в основном сводится к тому, что в данном разделе должно быть введено основное для современной физики понятие электромагнитного поля, а также физические понятия: электрический заряд, электромагнитные колебания, электромагнитная волна и ее скорость. Здесь же должны быть даны представления о свойствах электромагнитных волн, их распространении, о принципах радиосвязи, телевидения.
При изучении раздела «Электродинамика» происходит расширение и углубление в сознании школьников понятия материи. До этого они изучали лишь один вид материи — вещество. Теперь встречаются со вторым (особым) видом материи — электромагнитным полем, познают его отличие от вещества. При рассмотрении основ специальной теории относительности учащихся знакомят с физическими представлениями о пространстве и времени.
Если рассматривать логическую структуру раздела «Электродинамика», то в ней надо выделить: формирование понятия электромагнитного поля и электрического заряда; изучение взаимодействия поля и вещества, электрических и магнитных свойств вещества; изучение законов тока и электрических цепей; знакомство с элементами СТО; показ основных технических применений электродинамики.
В электродинамике рассматривают различные силы:
1) Силы, характеризующие взаимодействие покоящихся зарядов для вакуума. Они носят центральный характер, зависят от расстояния между взаимодействующими зарядами и не зависят от скорости.
2) Сила взаимодействия тока и магнитной стрелки (опыт Эрстеда) действует по линии, соединяющей их, зависит не только от расстояния между взаимодействующими объектами, но и от силы тока, которая, в свою очередь, зависит от скорости движения заряженных частиц и заряда.
3) Силы, возникающие между двумя параллельными проводниками с током, не являются центральными. Они пропорциональны силе тока в проводниках (а значит, и заряду) и скорости его движения и обратно пропорциональны расстоянию между ними.
4) Сила, действующая на движущийся заряд со стороны магнитного поля. Она зависит от скорости движения заряда, но не является центральной.
Во всех случаях говорится о скорости частиц относительно какой-то системы отсчета, именно это и учитывают в электродинамике. В электродинамике рассматривают силы, которые не только зависят от расстояний, но и от скорости движения зарядов в выбранной системе отсчета. Подобные силы в механике Ньютона не рассматривали.
Эти особенности в основном сводятся к тому, что электромагнитные взаимодействия специфичны, для их объяснения надо исходить из принципа близкодействия и учитывать конечную скорость передачи действия.
Еще одна особенность раздела «Электродинамика»— насыщенность его мировоззренческим и политехническим материалом. Необходимо так организовать работу учащихся, чтобы они глубоко и прочно усвоили этот материал. Целесообразно осветить роль в развитии физики и техники таких ученых, как А. Ампер, М. Фарадей, Дж. К.
Максвелл, Ш. Кулон, М. В. Ломоносов, Э. Ленц, А. Г. Столетов, Я. И. Френкель, Л. Д.
Ландау, П. Н. Лебедев, А. С. Попов, Г. Герц, А. Эйнштейн, Т. Юнг, А. Ф, Иоффе, Н. Д.
Папалекси, Л. И. Мандельштам и др.
Особенности методики изучения данного раздела определяются местом этого раздела в школьном курсе физики и спецификой изучаемого в нем материала. Рассмотрим влияние каждого из этих факторов отдельно.
Квантовую оптику изучают в конце школьного курса физики, причем изучают на количественном уровне впервые. Нигде на протяжении всего школьного курса физики учащиеся практически не встречались с дуализмом свойств частиц, вещества и поля, с дискретностью энергии, со свойствами ядра атома, с элементарными частицами. Лишь о строении атома и его ядра школьники получили самые первоначальные представления в базовом курсе физики и более полные — в курсе химии. Это обстоятельство требует от учителя так построить учебный процесс, чтобы при изучении материала добиваться глубокого и прочного усвоения его учащимися. Необходима продуманная работа по закреплению и применению изучаемого материала при решении задач, выполнении лабораторных работ, работе с дидактическим материалом и т. д. Пониманию и усвоению раздела способствуют оценочные расчеты, например, длин волн де Бройля, связанных с различными объектами, размера ядра, его плотности, энергии связи и т. п. Ныне, когда школы оснащены микрокалькуляторами и ЭВМ, эти расчеты не занимают много времени, а их результаты часто обладают большой убедительностью.
Для повышения качества усвоения материала очень важно опираться на ранее полученные знания. Например, при изучении правил смещения при радиоактивном распаде и при изучении ядерных реакций необходимо широко опираться на законы сохранения массы и заряда. Перед изучением строения атома целесообразно повторить понятие центростремительного ускорения, законы Ньютона, закон Кулона, а также те сведения о строении атома, которые учащиеся получили в базовом курсе физики и при изучении химии.
Особенность содержания квантовой оптики также накладывает отпечаток на методику ее изучения. В этом разделе учащихся знакомят со своеобразием свойств и закономерностей микромира, которые противоречат многим представлениям классической оптики. От школьников для его усвоения требуется не просто высокий уровень абстрактного мышления, но и диалектическое мышление. Противоречия волна — частица, дискретность — непрерывность рассматривают с позиций диалектического материализма. Поэтому при изучении этого раздела учителю важно опираться на те философские знания, которые имеют учащиеся, чаще напоминать им, что
метафизическому противопоставлению (либо да, либо нет) диалектика противопоставляет утверждение и да, и нет (в одних конкретных условиях — да, в других — нет). Поэтому нет ничего удивительного в том, что свет в одних условиях (интерференция, дифракция) ведет себя как волна, в других — как поток частиц.
В процессе преподавания квантовой оптики нецелесообразно говорить о странности микромира, парадоксальности его законов. Это едва ли будет способствовать усвоению материала, но может запутать учащихся. Раскрывая своеобразие законов микромира, отличие их от законов классической физики, убеждают школьников в естественности этих различий. По этой же причине с историей становления квантовой механики (насколько трудным, порой мучительным был процесс научного познания микромира) учащихся лучше знакомить лишь после изучения этого раздела. Эта история - еще одно свидетельство бесконечности процесса познания, относительности истины на каждом этапе его развития. Она способна убедить школьников в том, что человеческий ум открыл много диковинного в природе и, вероятно, откроет еще больше.
Для облегчения усвоения квантовой физики необходимо в учебном процессе широко использовать различные средства наглядности. Но число демонстрационных опытов, которые можно поставить при изучении этого раздела, в средней школе очень невелико. Поэтому, кроме эксперимента, широко используют рисунки, чертежи, графики, фотографии треков, плакаты и диапозитивы. Прежде всего необходимо иллюстрировать фундаментальные опыты (опыт Резерфорда по рассеянию -частиц, опыты Франка и Герца и др.), а также разъяснять принцип устройства приборов, регистрирующих частицы, ускорителей, атомного реактора, атомной электростанции и т. п. При изучении этого раздела широко используют учебные видеофильмы «Фотоэффект», «Фотоэлементы и их применение», «Давление света», «Радиоактивность и атомное ядро», «Ядерная энергетика в мирных целях», кинофрагменты «Дискретность энергетических уровней атома (опыт Франка-Герца)», «Природа линейчатых спектров атомов водорода», диафильмы «Трековые приборы в ядерной физике», «Ускорители заряженных частиц», «Этот мирный добрый атом», «Строение атома и атомного ядра», а также диапозитивы «Атомное ядро» и настенные таблицы («Атомная электростанция» и др.). Очень большие возможности в данном отношении открывает компьютерное моделирование.
© ООО «Знанио»
С вами с 2009 года.