КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
Оценка 4.7
Мероприятия
docx
математика
11 кл +1
05.04.2018
Данная методическая разработка предназначена для проведения мониторинга знаний обучающихся по основным разделам рабочей программы в форме тестирования.
Контрольно-измерительные материалы разработаны на основе рабочей программы учебной дисциплины «Математика», направлены на проверку у обучающихся усвоения знаний и сформированности умений базового уровня. Контрольно-измерительные материалы могут быть также использованы в качестве раздаточного материала, при организации самостоятельной работы студентов и на практических занятиях.
В методической разработке приведены критерии оценивания отдельных заданий.
КИМ по математике 2 курс ЗИО.docx
Министерство образования и науки Челябинской области
Государственное бюджетное профессиональное
образовательное учреждение
«ЮжноУральский многопрофильный колледж»
КОНТРОЛЬНОИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ
ДЛЯ ПРОВЕДЕНИЯ РУБЕЖНОГО МОНИТОРИНГА ЗНАНИЙ
ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
ДЛЯ СПЕЦИАЛЬНОСТИ 21.02.05
ЗЕМЕЛЬНОИМУЩЕСТВЕННЫЕ ОТНОШЕНИЯ г. Челябинск, 2018
О Д О Б Р Е Н О
Цикловой методической комиссией
естественнонаучных дисциплин
Протокол № 5
« 26 » января 2018 г.
Председатель ЦМК
_____________О.Н. Суханова
Составитель: М.А. Вуйлова, методист, преподаватель математики высшей
категории ГБПОУ «ЮжноУральский многопрофильный колледж»
Рецензент: Е.А.Кондратьева, преподаватель математики высшей категории
ГБПОУ «ЮжноУральский многопрофильный колледж»
Данная методическая разработка
предназначена для проведения
мониторинга знаний обучающихся по основным разделам рабочей программы
в форме тестирования.
Контрольноизмерительные материалы разработаны на основе рабочей
программы учебной дисциплины «Математика», направлены на проверку у
обучающихся усвоения знаний и сформированности умений базового уровня.
Контрольноизмерительные материалы могут быть также использованы в
качестве раздаточного материала, при организации самостоятельной работы
студентов и на практических занятиях.
В методической разработке приведены критерии оценивания отдельных
заданий.
2 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
1. Рубежный мониторинг знаний обучающихся проводится в форме
тестирования (I семестр).
2. Контрольноизмерительные материалы разработаны на основе рабочей
(ЕН.01) для
программы учебной дисциплины Математика
специальности 21.02.05 Земельноимущественные отношения.
3. В предъявленные контрольноизмерительные материалы включены
задания, проверяющие у студентов качество усвоения знаний и
сформированости умений базового уровня.
4. Контрольноизмерительные материалы включают в себя 4 варианта
заданий (каждый вариант содержит 20 тестов), охватывающих
дидактические единицы следующих разделов рабочей программы
учебной дисциплины:
раздел 1. Элементы линейной алгебры;
раздел 2. Элементы аналитической геометрии;
раздел 3. Основы теории комплексных чисел.
5. Критерии оценивания работы
Задания 114 оцениваются:
- одним баллом при их верном выполнении;
- нулем баллов – в остальных случаях.
Задания 1520 оцениваются:
- двумя баллами при их верном выполнении;
- одним баллом, если в решении допущена одна вычислительная
ошибка, не влияющая на ход решения;
- нулем баллов – в остальных случаях.
3 Количество баллов
Оценка
010
1118
1924
2526
2
3
4
5
I вариант
В заданиях 19 выберите один правильный ответ из предложенных.
1.
Найдите матрицу
, если
C
-
BA
A
-
1
2
5
3
,
.
B
0
-
4
2 3
2)
1)
-
1
6
3
6
-
-
1
6
-
6
3
3)
2 1
7 0
4)
-
-
1
-
0
2
7
2.
Найдите матрицу
, если
BAD
A
-
1
2
5
3
,
.
B
0
-
4
2 3
1)
6
0
30 15
2)
0
6
22 15
3)
0
9
8
10
4)
7 8
1
20
3.
4.
5.
6.
Могут ли быть равными квадратные матрицы, одна из которых третьего порядка, а
другая – четвертого?
1) не могут 2) могут
Вычислите определитель матрицы
.
M
-
-
1
2
5
5 4
10
3
2
1
1) 60 2) 68 3) 0 4) 16
Имеет ли матрица
M
, указанная в задании №4, обратную матрицу?
1) имеет 2) не имеет
Найдите алгебраическое дополнение элемента
матрицы
21a
.
N
1
3
0
-
4
0 1
0
1
2
4 7.
8.
9.
1) 1 2) 5 3) 5 4) 1
Вычислите ранг матрицы
A
6 5 4
3
2
2
1
1 2
1
0
0 0 0
0
.
1) 0 2) 3 3) 2 4) 1
Известно, что система линейных уравнений
x
2
1
-
2
x
1
x
3
1
-
4
,
-
-
-
x
3
2
x
x
6
3
,
6
x
x
x
2
3
2
3
2
имеет единственное решение. Укажите верное утверждение:
1) данная система является определенной;
2) данная система является несовместной;
3) данная система является однородной;
4) данная система является неопределенной.
Систему линейных уравнений
x
1
x
1
-
x
1
-
,
1
-
,
3
2
,
1
x
x
x
3
2
4
x
-
3
2
x
4
x
3
2
3
3
определитель
которой отличен от нуля, требуется решить с помощью формул
Крамера. Укажите определитель
2
для нахождения значения переменной
.
2x
1)
1
1
-
-
1
-
2
3
-
4
1
4 3
2)
1
3
-
1
-
2
3
-
4
1
4 3
3)
1
1
-
3
1
3 4
-
1
1 3
4)
1
1
-
-
2
1
-
3
1
4
1
1
10.
Решите систему линейных уравнений методом Гаусса:
x
1
x
1
-
x
1
,
0
1
,
x
x
3
x
3
2
x
2
2
x
x
3
-
2
.
3
2
2
2
3
Запишите ответ.
В заданиях 1113 выберите один правильный ответ из предложенных.
11. Найдите длину вектора
c
3-
b
a
, если
3a
1 6; ;
,
3 0; ; 1b
.
1) 100 2) 10 3) 2 4) 14
5 12. Найдите косинус угла между векторами
a
2)
1)
5
9
6
52
3)
4)
2
3
2
9
i
7
и
-
k
j
2
b
i
3
j
-
6
k
3
.
13. Треугольник
ABC
задан вершинами
-A
37 ;
,
-2B
1 ;
и
C
-
1 -
;
5
. Составьте
уравнение стороны
.
AC
1)
x
- y
04 -
2)
4
x
y
3
0
19
3)
3
x
y
4
0
19
4)
x
y
2
0
11
К заданию 14 укажите номер установленного соответствия.
14.
Уравнение прямой, проходящей через точку
0 -M
(
) ;
31
перпендикулярно прямой
:
l
Прямая
задана
l
уравнением
.
y
2 x
5
1
1)
2)
3)
4)
;
y
-
3
x
1
5
2
x
-
1
y
--
3
;
;
y
-
3
x
1
5
2
5
2
.
y
-
3
x
1
2
5
15. Выполните деление комплексных чисел в алгебраической форме:
. Запишите ответ.
45
33
-
j
j
16. Выполните умножение комплексных чисел в тригонометрической форме:
3
cos
O
30
j
sin
O
30
2
cos
O
45
j
sin
O
45
. Запишите ответ.
6 17. Вычислите с помощью формулы Муавра:
. Запишите ответ в
2
cos
12
j
sin
6
12
алгебраической форме.
18. Выполните деление комплексных чисел в показательной форме:
. Запишите
j
2
3
j
5
2
e
50
e
,
ответ.
19. Представьте число
в показательной форме. Аргумент числа
z
укажите в
z
- 3
j
границах:
-
. Запишите ответ.
20. Вычислите все значения
. Запишите в ответе найденные значения в алгебраической
3 8
форме.
II вариант
В заданиях 19 выберите один правильный ответ из предложенных.
1.Найдите матрицу
, если
C
-
AB
A
4
2
-
3
2
,
B
-
5 3
0 1
2)
1)
-
-
1
5
2
2
-
9
1
-
2
4
3)
-
1
5
-
2
2
4)
-
1
9
-
2
4
2.
Найдите матрицу
, если
BAD
A
4
2
-
3
2
,
B
-
5 3
0 1
.
.
1)
2 4 1
-
3
19
2)
-
3
20
6
0
3)
-
-
2
7
10
15
4)
-
-
10
2
15
11
3.
Существует ли произведение матриц
, если матрица
A
BA
имеет размер 3х4, а
матрица
B
– размер 2х4?
1) существует 2) не существует
7 4.
Вычислите определитель матрицы
.
N
3
2
1
-
4 6
2
-
1
2 3
5.
6.
7.
8.
9.
1) 72 2) 0 3) 84 4) 12
Имеет ли матрица
N
, указанная в задании №4, обратную матрицу?
1) не имеет 2) имеет
Найдите алгебраическое дополнение элемента
матрицы
13a
.
M
-
0
1
4
3
0
1
-
7
2
1
1) 1 2) 5 3) 1 4) 5
Вычислите ранг матрицы
A
4
3
1
1
2
1
2
5
0
0
0
0
.
1) 2 2) 0 3) 3 4) 4
Известно, что система линейных уравнений
2
x
x
2
1
-
3
x
x
2
1
x
x
4
1
-
7
x
,
3
,
2
-
16
x
3
x
3
2
3
не имеет решения. Укажите верное утверждение:
1) данная система является определенной;
2) данная система является однородной;
3) данная система является несовместной;
4) данная система является неопределенной.
Систему линейных уравнений
x
1
x
1
-
x
1
,
0
1
,
x
x
,
3
x
3
2
x
2
2
x
x
3
-
2
3
2
3
2
2
определитель
которой отличен от нуля, требуется решить с помощью формул
Крамера. Укажите определитель
3
для нахождения значения переменной
.
3x
1)
1
1
-
2
1
3
2
-
2 2
1
2)
1
1
-
0
1
1
2
2
3 1
3)
1
2 0
3
2
1
-
2 2
3
4)
1
1
-
2
0
3
1
-
3 2
1
8 10.
Решите систему линейных уравнений методом Гаусса:
x
1
x
1
-
x
1
-
,
1
-
,
3
2
.
1
x
x
x
3
2
4
x
-
3
2
x
3
x
3
3
4
2
Запишите ответ.
В заданиях 1113 выберите один правильный ответ из предложенных.
11. Найдите длину вектора
d
ba
- 2
, если
4-a
3 0; ;
,
4-b
;
10 2;
.
1) 6 2) 10 3)
4) 36
28
12. Найдите косинус угла между векторами
c
i
5
j
-
2
k
3
и
i
d
- 6
k
j
.
2)
1)
-
5
19
2
7
19
3)
5-
19
4)
2-
19
13.
Треугольник
задан вершинами
- 5A
2 ;
-
,
B
67 ;
и
C
5 - ;
4
. Составьте
ABC
уравнение стороны
.
AC
1)
3
x
- y
0
11
2)
x
y
5
0
15
3)
x
-
7
y
-
0
33
4)
5
x
y
0
15
К заданию 14 укажите номер установленного соответствия.
14.
Уравнение прямой, проходящей через точку
-M
;(
10
3
)
параллельно прямой
:
l
Прямая
задана
l
уравнением
3
x
y
4
-
0
2
.
1)
2)
3)
;
;
y
-
3
x
-
1
4
3
x
--
1
y
3
3
4
;
y
3
x
-
1
3
4
9 4)
y
-
3
;
x
-
1
3
4
15. Выполните деление комплексных чисел в алгебраической форме:
. Запишите ответ.
-
21
-
34
j
j
16. Выполните деление комплексных чисел в тригонометрической форме:
9
cos
O
72
j
sin
O
72
3
:
cos
O
25
j
sin
O
25
. Запишите ответ.
17. Вычислите с помощью формулы Муавра:
. Запишите ответ в
2
cos
12
j
sin
4
12
алгебраической форме.
18. Выполните умножение комплексных чисел в показательной форме:
.
j
2
5
3
j
9
e
1
3
e
Запишите ответ.
19.
Представьте число
z
1-
3
j
в показательной форме. Аргумент числа
z
укажите в границах:
-
. Запишите ответ.
20. Вычислите все значения
3
27-
алгебраической форме.
. Запишите в ответе найденные значения в
В заданиях 19 выберите один правильный ответ из предложенных.
III вариант
1.Найдите матрицу
, если
C
-
AB
A
-
1
2
5
3
,
.
B
0
-
4
2 3
2)
1)
-
1
6
3
6
-
-
1
6
-
6
3
3)
2 1
7 0
4)
-
-
1
-
0
2
7
10 2.
Найдите матрицу
, если
BAD
A
-
1
2
5
3
,
.
B
0
-
4
2 3
2)
1)
6
0
30 15
0
9
8
10
3)
6
0
22 15
4)
7 8
1
20
3.
4.
5.
6.
7.
8.
9.
Можно ли найти сумму двух матриц, одна из которых имеет размер 3х4, а другая –
размер 4х3 ?
1) можно 2) нельзя
Вычислите определитель матрицы
.
M
-
-
1
5 2
5
4
10
2
1
1
1) 60 2) 68 3) 16 4) 0
Имеет ли матрица
M
, указанная в задании №4, обратную матрицу?
1) не имеет 2) имеет
Найдите алгебраическое дополнение элемента
матрицы
23a
.
N
1
3
7
-
4
0 1
3
2
4
1) 31 2) 25 3) 31 4) 25
Вычислите ранг матрицы
.
A
3
2
0
6 5 4
2
1
1 2
1
0
0 0 0
1) 0 2) 3 3) 1 4) 2
Известно, что система линейных уравнений
-
x
2
x
1
x
2
x
1
3
x
x
1
-
x
5
,
3
-
x
x
-
2
1
-
-
x
2
x
3
x
6
,
4
3
2
4
3
2
2
4
имеет бесконечное множество решений. Укажите верное утверждение:
1) данная система является определенной;
2) данная система является несовместной;
3) данная система является однородной;
4) данная система является неопределенной.
Систему линейных уравнений
x
1
x
1
-
x
1
-
,
1
-
3
,
2
x
x
,
1
3
x
2
4
x
-
3
2
x
4
x
3
3
2
3
11 определитель
которой отличен от нуля, требуется решить с помощью формул
Крамера. Укажите определитель
1
для нахождения значения переменной
.
1x
1)
1
1
-
-
1
-
2
3
-
4
1
4 3
2)
1
3
-
1
-
2
3
-
4
1
4 3
3)
1
1
-
3
1
3 4
-
1
1 3
4)
1
1
-
-
2
1
-
3
1
4
1
1
10.
Решите систему линейных уравнений методом Гаусса:
x
1
x
1
-
x
1
,
1
0
,
3
x
x
x
3
2
2
x
-
2
2
x
2
.
3
x
3
3
2
2
Запишите ответ.
В заданиях 1113 выберите один правильный ответ из предложенных.
11. Найдите длину вектора
d
ba
-2
, если
3-a
0 4; ;
,
b
2 4; ;
-
- 2
1) 36 2) 2 3) 6 4) 10
12. Найдите косинус угла между векторами
a
-
i
6
j
3
k
3
и
b
2)
1)
2-
9
-
2
52
3)
-
2
39
4)
2
3
i
2
.
.
k
j
-
7
13. Треугольник
ABC
задан вершинами
-A
37 ;
,
-2B
1 ;
и
C
-
1 -
;
5
. Составьте
уравнение стороны
.
BC
1)
2
x
- y
-
03
2)
4
x
y
3
0
19
3)
4
x
-
3
y
-
0
11
4)
3
x
-
4
y
0
11
К заданию 14 укажите номер установленного соответствия.
14.
Уравнение прямой, проходящей через точку
12 Прямая
задана
l
уравнением
.
3 - x
4
1
y
-10M
)2 ;(
перпендикулярно прямой
:
l
1)
2)
3)
4)
;
;
;
x
--
1
y
2
4
3
y
--
2
y
-
2
x
-
1
x
-
1
4
3
4
3
.
y
2
x
-
1
3
4
15.
Выполните деление комплексных чисел в алгебраической форме:
. Запишите ответ.
52
86
-
-
j
j
16. Выполните умножение комплексных чисел в тригонометрической форме:
5
cos
O
42
j
sin
O
42
3
cos
O
28
j
sin
O
28
. Запишите ответ.
17. Вычислите с помощью формулы Муавра:
. Запишите ответ в
2
cos
24
j
sin
4
24
алгебраической форме.
18. Выполните деление комплексных чисел в показательной форме:
. Запишите
j
3
4
3
e
j
3
9
e
ответ.
19. Представьте число
в показательной форме. Аргумент числа
укажите
z
z
- 3
j
в границах:
-
. Запишите ответ.
20. Вычислите все значения
. Запишите в ответе найденные значения в
алгебраической форме.
3 27
IV вариант
13 В заданиях 19 выберите один правильный ответ из предложенных.
1.Найдите матрицу
, если
C
-
BA
A
4
2
-
3
2
,
B
-
5 3
0 1
.
.
2)
1)
-
1
9
-
2
4
-
9
1
-
2
4
3)
-
1
5
-
2
2
4)
2.
Найдите матрицу
, если
BAD
A
4
2
-
3
2
-
-
,
1
5
2
2
B
-
5 3
0 1
1)
-
-
10
2
11
15
2)
-
3
20
6
0
3)
-
-
2
7
10
15
4)
2 4 1
-
3
19
3.
Существует ли произведение матриц
, если матрица
A
BA
имеет размер 3х4, а
матрица
B
– размер 4х2?
1) существует 2) не существует
Вычислите определитель матрицы
4.
N
.
-
1
2 3
-
2
4 6
3
1
2
5.
6.
1) 72 2) 84 3) 0 4) 12
Имеет ли матрица
N
, указанная в задании №4, обратную матрицу?
1) имеет 2) не имеет
Найдите алгебраическое дополнение элемента
матрицы
12a
.
M
-
1
0
4
0
3
2
-
1
5
7
1) 7 2) 13 3) 7 4) 13
7.
Вычислите ранг матрицы
.
A
4
1
1
3
2
2
5
1
0
0
0
0
1) 0 2) 2 3) 3 4) 4
Известно, что система линейных уравнений
8.
14
2
x
x
2
1
-
2
3
x
x
1
x
x
4
1
2
3
x
-
7
x
,
3
,
2
-
16
x
3
3
не имеет решения. Укажите верное утверждение:
1) данная система является определенной;
2) данная система является совместной;
3) данная система является неопределенной;
4) данная система является несовместной.
Систему линейных уравнений
x
1
x
1
-
x
1
,
0
1
,
x
x
,
3
x
3
2
x
2
2
x
x
3
-
2
3
2
3
9.
2
2
определитель
которой отличен от нуля, требуется решить с помощью формул
Крамера. Укажите определитель
2
для нахождения значения переменной
.
2x
1)
1
1
-
2
1
3
2
-
2 2
1
2)
1
1
-
0
1
1
2
2
3 1
3)
1
2 0
3
2
1
-
2 2
3
4)
1
1
-
2
0
3
1
-
3 2
1
10.
Решите систему линейных уравнений методом Гаусса:
x
1
x
1
-
x
1
-
,
3
-
1
,
.
1
x
x
x
3
2
x
4
4
x
x
3
-
3
3
2
3
2
2
Запишите ответ.
В заданиях 1113 выберите один правильный ответ из предложенных.
11. Найдите длину вектора
c
3-
b
a
, если
1-a
0 3; ;
,
3-b
2 1; ;
.
1) 14 2) 100 3) 2 4) 10
12. Найдите косинус угла между векторами
a
-
3
i
j
2
5
k
и
i
b
- 6
j
k
.
15 3)
2)
1)
10
19
5
19
5
19
2
4)
5
30
3
13. Треугольник
ABC
задан вершинами
- 5A
2 ;
-
,
B
67 ;
и
C
5 - ;
4
. Составьте
уравнение стороны
.
AB
1)
3
x
- y
0
17
2)
3
x
-
2
y
-
0
4
3)
x
y
5
0
15
4)
2
x
-
3
y
0
4
К заданию 14 укажите номер установленного соответствия.
14.
Уравнение прямой, проходящей через точку
0 -M
( 2
)1 ;
параллельно прямой
:
l
Прямая
задана
l
уравнением
2
x
-
5
y
01
.
1)
2)
3)
4)
;
y
-
1
x
2
2
5
;
.
y
--
1
x
2
2
5
;
x
2
y
-
1
2
5
y
--
1
x
2
5
2
15. Выполните деление комплексных чисел в алгебраической форме:
. Запишите ответ.
21
-
43
j
j
16. Выполните деление комплексных чисел в тригонометрической форме:
8
cos
O
85
j
sin
O
85
:
2
cos
O
58
j
sin
O
58
. Запишите ответ.
17. Вычислите с помощью формулы Муавра:
. Запишите ответ в
2
cos
4
j
sin
6
4
алгебраической форме.
16 18. Выполните умножение комплексных чисел в показательной форме:
.
j
3
4
6
j
3
e
2
e
Запишите ответ.
19. Представьте число
в показательной форме. Аргумент числа
z
укажите в
z
1-
3
j
границах:
-
. Запишите ответ.
20. Вычислите все значения
3
8-
алгебраической форме.
. Запишите в ответе найденные значения в
№
за
да
ни
я
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Ответы к заданиям
Вариант 1
Вариант 2
Вариант 3
Вариант 4
№2
№2
№1
№3
№2
№4
№3
№1
№4
101 ; ;-
№2
№4
№2
№3
1 -
3
6
2
j
№3
№4
№2
№2
№1
№3
№1
№3
№4
1
0 ;1 ;
№1
№3
№2
№4
j2
№1
№3
№2
№4
№1
№2
№4
№4
№2
101 ; ;-
№3
№1
№3
№3
№4
№1
№1
№3
№2
№1
№2
№4
№2
1
0 ;1 ;
№4
№2
№4
№1
520
,
-
j140
,
-
,
j4020
,
6
cos
O
75
j
sin
O
75
3
cos
47
O
j
sin
47
O
15
cos
O
70
j
sin
70
O
4
cos
27
O
j
sin
27
O
17 17.
18.
19.
20.
j64
j
7
15
22
e
- j
6
2
e
j388
j838
j
11
15
3
e
j
2
3
2
e
5
12
je
1
3
j
5
6
2
e
j64-
j
11
12
23
e
- j
3
2
e
-
2
;
1
3
j
-
;
1
-
3
j
3
2
33
2
j
-
;
3
;
-
3
2
33
2
j
3
;
-
3
2
33
2
j
-
;
-
3
2
33
2
j
1
3
j
-
;
12
;
-
3
j
18
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ МАТЕМАТИКА
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.